您当前的位置: 首页 >  flink

Bulut0907

暂无认证

  • 5浏览

    0关注

    346博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

Flink Maven项目准备、key的定义、DataSet的数据源

Bulut0907 发布时间:2021-10-23 23:16:38 ,浏览量:5

目录
  • 1. Maven项目准备
  • 2. 使用字段表达式为groupBy定义嵌套数据类型的Key
  • 3. DataSet API的数据源
    • 3.1 基于文件
    • 3.2 压缩文件
    • 3.3 基于集合
    • 3.4 zip DataSet中的元素

1. Maven项目准备
  1. resources/log4j2.properties
################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################

rootLogger.level = INFO
rootLogger.appenderRef.console.ref = ConsoleAppender

appender.console.name = ConsoleAppender
appender.console.type = CONSOLE
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
  1. pom.xml


    4.0.0

    com.hh
    flink-test
    1.0-SNAPSHOT

    
        1.13.2
        2.11
        2.11.12
        1.8
    

    
        
            central
            Central Repository
            https://repo.maven.apache.org/maven2
            default
            
                false
            
        
    

    

        
            org.apache.flink
            flink-scala_${scala.binary.version}
            ${flink.version}
            provided
        

        
            org.apache.flink
            flink-clients_${scala.binary.version}
            ${flink.version}
            provided
        

        
            org.scala-lang
            scala-library
            ${scala.version}
            provided
        

    

    
        

            
                org.apache.maven.plugins
                maven-shade-plugin
                3.2.4
                
                    
                        package
                        
                            shade
                        
                        
                            
                                
                                    
                                
                            
                            
                                
                                    *:*
                                    
                                        META-INF/*.RSA
                                    
                                
                            
                            
                                
                                    
                                
                            
                        
                    
                
            

            
                org.apache.maven.plugins
                maven-compiler-plugin
                3.8.1
                
                    ${target.java.version}
                    ${target.java.version}
                
            

            
                net.alchim31.maven
                scala-maven-plugin
                4.5.3
                
                    
                        
                            compile
                            testCompile
                        
                    
                
                
                    
                        -nobootcp
                        -target:jvm-${target.java.version}
                    
                
            

        
    


2. 使用字段表达式为groupBy定义嵌套数据类型的Key

== keyBy同理==

package devBase

import org.apache.flink.api.scala.{ExecutionEnvironment,createTypeInformation}

case class Score(english:Double, math:Double)
case class Teacher(name:String, student:(String, Score))

object DefineKey {


  def main(args: Array[String]): Unit = {


    val env = ExecutionEnvironment.getExecutionEnvironment
    val input = env.fromElements(Teacher("teacher1",("student1", Score(81, 82))),
      Teacher("teacher2",("student2", Score(91, 92))))
    input.groupBy("student._2.math")
    // 对整个teacher进行分组;也可以用于普通class等其它数据类型
    input.groupBy("_")

  }

}

3. DataSet API的数据源 3.1 基于文件

readTextFile.txt文件内容如下:

hello
world

readCsvFile.csv文件内容如下:

"Liming",1,"Bei,jing"
comment_Zhangsan,true,Shanghai
Zhaosi,False,Guangzhou

测试代码如下:

package devBase

import org.apache.flink.api.java.io.TextInputFormat
import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment, createTypeInformation}
import org.apache.flink.core.fs.Path
import org.apache.flink.types.StringValue

object DatasetApiTest {

  def main(args: Array[String]): Unit = {

    val env = ExecutionEnvironment.getExecutionEnvironment
    val text_filepath = "src/main/resources/readTextFile.txt"
    val text_input: DataSet[String] = env.readTextFile(text_filepath)
    text_input.print()
    /*
    world
    hello
     */

    // StringValue为Flink定义的可变字符串
    val stringValue_input: DataSet[StringValue] = env.readTextFileWithValue(text_filepath)
    stringValue_input.print()
    /*
    world
    hello
     */

    // 读取一个原始数据类型,如String、Int
    val primitives_input: DataSet[String] = env.readFileOfPrimitives[String](text_filepath, "\n")
    primitives_input.print()
    /*
    hello
    world
     */

    val file_input = env.readFile(new TextInputFormat(new Path(text_filepath)), text_filepath)
    file_input.print()
    /*
    hello
    world
     */

    val create_input = env.createInput(new TextInputFormat(new Path(text_filepath)))
    create_input.print()
    /*
    world
    hello
     */


    val csv_input: DataSet[(Boolean, String)] = env.readCsvFile(
      "src/main/resources/readCsvFile.csv",         // 读取的文件路径,该参数必须指定,其它参数可不指定
      "\n",                   // 每行数据分隔符
      ",",                    // 字段分隔符
      Character.valueOf('"'),               // 字符串引号字符
      false,                  // 是否忽略第一行数据
      "comment_",           // 以该字符串开头的行数据,直接忽略
      false,                        // true表示忽略解析错误的行,false遇到解析错误的行直接报错
      Array(1, 2),                          // 需要从CSV文件获取的字段列表
      Array("is_girl", "city")              // 给获取的字段列表定义列名
    )
    csv_input.print()
    /*
    (true,Bei,jing)
    (false,Guangzhou)
     */
  }

}
3.2 压缩文件

Flink的任何FileInputFormat(如TextInputFormat)都支持直接读取压缩文件,支持的压缩文件后缀有GZip(.gz、.gzip)、Bzip2(.bz2)、XZ(.xz),下面以.gz为例进行演示

在linux准备.gz压缩文件

[root@bigdata005 opt]# 
[root@bigdata005 opt]# cat readZipFile.txt 
hello
world[root@bigdata005 opt]# 
[root@bigdata005 opt]# 
[root@bigdata005 opt]# gzip readZipFile.txt
[root@bigdata005 opt]# 
[root@bigdata005 opt]# ll readZipFile*
-rw-r--r--. 1 root root 48 9月   6 22:02 readZipFile.txt.gz
[root@bigdata005 opt]# 

将readZipFile.txt.gz压缩文件复制到IDEA的src/main/resources目录下

完整读取代码如下:

package devBase

import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment}

object DatasetApiTest {

  def main(args: Array[String]): Unit = {

    val env = ExecutionEnvironment.getExecutionEnvironment

    val zip_input:DataSet[String] = env.readTextFile("src/main/resources/readZipFile.txt.gz")
    zip_input.print()
  }

}

执行结果如下:

hello
world
3.3 基于集合
package devBase

import org.apache.flink.api.scala.{ExecutionEnvironment, createTypeInformation}
import org.apache.flink.util.NumberSequenceIterator

import scala.collection.mutable.ArrayBuffer

object DatasetApiTest {

  def main(args: Array[String]): Unit = {

    val env = ExecutionEnvironment.getExecutionEnvironment
    val input1 = env.fromElements(("Liming", 10), ("Zhangsan", 20))
    input1.print()
    /*
    (Liming,10)
    (Zhangsan,20)
     */

    val input2 = env.fromCollection(ArrayBuffer(("Liming", 10), ("Zhangsan", 20)))
    input2.print()
    /*
    (Liming,10)
    (Zhangsan,20)
     */

    // 参数为:SplittableIterator[T], 本示例生成0,1,2,3的序列
    val input3 = env.fromParallelCollection(new NumberSequenceIterator(0L, 3L))
    input3.print()
    /*
    3
    1
    2
    0
     */

    // 生成0,1,2,3的序列
    val input4 = env.generateSequence(0L, 3L)
    input4.print()
    /*
    3
    2
    0
    1
     */
  }

}
3.4 zip DataSet中的元素
  1. zipWithIndex
  • 唯一ID是连续的,需要计算每个分区的数据量
package devBase

import org.apache.flink.api.scala.utils.DataSetUtils
import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment, createTypeInformation}

object DatasetApiTest {

  def main(args: Array[String]): Unit = {

    val env = ExecutionEnvironment.getExecutionEnvironment

    val input = env.fromElements("1A", "2B", "3C", "4D", "5E", "6F", "7G", "8H")
      .setParallelism(4)

    val zipWithIndex_output:DataSet[(Long,String)] = input.zipWithIndex
    zipWithIndex_output.print()
    
  }

}

执行结果

(0,1A)
(1,5E)
(2,2B)
(3,6F)
(4,3C)
(5,7G)
(6,4D)
(7,8H)
  1. zipWithUniqueId
  • 唯一ID是不连续的,如共5个ID,分别为(0、1、3、6、8),不需要计算每个分区的数据量
package devBase

import org.apache.flink.api.scala.utils.DataSetUtils
import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment, createTypeInformation}

object DatasetApiTest {

  def main(args: Array[String]): Unit = {

    val env = ExecutionEnvironment.getExecutionEnvironment

    val input = env.fromElements("1A", "2B", "3C", "4D", "5E", "6F", "7G", "8H")
      .setParallelism(4)

    val zipWithUniqueId_output:DataSet[(Long,String)] = input.zipWithUniqueId
    zipWithUniqueId_output.print()

  }

}

执行结果:

(0,1A)
(4,5E)
(1,2B)
(5,6F)
(2,3C)
(6,7G)
(3,4D)
(7,8H)
关注
打赏
1664501120
查看更多评论
立即登录/注册

微信扫码登录

0.3355s