使用的数据集包含两列,name
(姓名),sex
(性别), 数量45000
, name
列数据唯一。 代码实现:
import random
import nltk
import pandas as pd
from pathlib import Path
from sklearn import model_selection
from numpy import mean
current_path = Path.cwd()
# 特征提取
def gender_features(name):
name = name.lower()
if len(name) == 2:
return {
'last_name': name[-1]
}
if len(name) >= 3:
return {
'last_name': name[-1],
'last2_name': name[-2],
'last12_name': name[-2:]
}
# 获取featuresets
def get_featuresets(X, y):
labeled_names = []
for i in range(len(X)):
labeled_names.append((X.values[i], y.values[i]))
# 数据打乱
random.shuffle(labeled_names)
# 我们使用特征提取器来处理数据
featuresets = [(gender_features(name), gender) for (name, gender) in labeled_names]
return featuresets
if __name__=='__main__':
labeled_names = []
df = pd.read_csv(Path(current_path, '中文姓名性别预测.csv'), encoding='utf8')
# K折交叉验证
kf = model_selection.KFold(n_splits=10)
# 使用10折交叉验验证划分数据集,返回一个生成器对象(即索引)
digits_gen = kf.split(df)
accuracy_list = []
for train_idx, test_idx in digits_gen:
X_train = df['name'].iloc[train_idx] #训练集
X_test = df['name'].iloc[test_idx] #测试集
y_train = df['sex'].iloc[train_idx] #训练集标签
y_test = df['sex'].iloc[test_idx] #测试集标签
featuresets_train = get_featuresets(X_train, y_train)
featuresets_test = get_featuresets(X_test, y_test)
# 该训练集用于训练一个新的“naive Bayes”分类器。
classifier = nltk.NaiveBayesClassifier.train(featuresets_train)
accuracy_list.append(nltk.classify.accuracy(classifier, featuresets_test))
print(accuracy_list)
print(mean(accuracy_list))