您当前的位置: 首页 >  Python

鱼香ROS

暂无认证

  • 3浏览

    0关注

    498博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

手眼标定算法Tsai-Lenz代码实现(Python、C++、Matlab)

鱼香ROS 发布时间:2021-03-01 17:03:56 ,浏览量:3

你好,我是小智。

上一节介绍了手眼标定算法Tsai的原理,这一节介绍算法的代码实现,分别有Python、C++、Matlab版本的算法实现方式。

  • 该算法适用于将相机装在手抓上和将相机装在外部两种情况
  • 论文已经传到git上,地址:https://gitee.com/ohhuo/handeye-tsai

如果你要进行手眼标定,可以参考我的其他文章:

  • 手眼标定-基础使用
  • 手眼标定-JAKA机械臂
  • 手眼标定-AUBO机械臂
  • 手眼标定-Aruco使用与相机标定
  • 手眼标定-注意事项

如果上述程序使用过程中遇到问题,可以参考:

  • 手眼标定-常见问题排查

如果你对手眼标定原理感兴趣,可以参考以下文章:

  • 机器人手眼标定原理介绍(含详细推导过程)使用Tsai-Lenz算法
  • 手眼标定算法TSAI_LENZ,眼在手外python代码实现
  • 手眼标定算法Tsai-Lenz代码实现(Python、C++、Matlab)
Python版本

使用前需要安装库:

pip3 install transforms3d
pip3 install numpy
#!/usr/bin/env python
# coding: utf-8
import transforms3d as tfs
import numpy as np
import math

def get_matrix_eular_radu(x,y,z,rx,ry,rz):
    rmat = tfs.euler.euler2mat(math.radians(rx),math.radians(ry),math.radians(rz))
    rmat = tfs.affines.compose(np.squeeze(np.asarray((x,y,z))), rmat, [1, 1, 1])
    return rmat

def skew(v):
    return np.array([[0,-v[2],v[1]],
                     [v[2],0,-v[0]],
                     [-v[1],v[0],0]])

def rot2quat_minimal(m):
    quat =  tfs.quaternions.mat2quat(m[0:3,0:3])
    return quat[1:]

def quatMinimal2rot(q):
    p = np.dot(q.T,q)
    w = np.sqrt(np.subtract(1,p[0][0]))
    return tfs.quaternions.quat2mat([w,q[0],q[1],q[2]])

hand = [1.1988093940033604, -0.42405585264804424, 0.18828251788562061, 151.3390418721659, -18.612399542280507, 153.05074895025035,
        1.1684831621733476, -0.183273375514656, 0.12744868246620855, -161.57083804238462, 9.07159838346732, 89.1641128844487,
        1.1508343174145468, -0.22694301453461405, 0.26625166858469146, 177.8815855486261, 0.8991159570568988, 77.67286224959672]
camera = [-0.16249272227287292, -0.047310635447502136, 0.4077761471271515, -56.98037030812389, -6.16739631361851, -115.84333735802369,
          0.03955405578017235, -0.013497642241418362, 0.33975949883461, -100.87129330834215, -17.192685528625265, -173.07354634882094,
          -0.08517949283123016, 0.00957852229475975, 0.46546608209609985, -90.85270962096058, 0.9315977976503153, 175.2059707654342]


Hgs,Hcs = [],[]
for i in range(0,len(hand),6):
    Hgs.append(get_matrix_eular_radu(hand[i],hand[i+1],hand[i+2],hand[i+3],hand[i+4],hand[i+5]))    
    Hcs.append(get_matrix_eular_radu(camera[i],camera[i+1],camera[i+2],camera[i+3],camera[i+4],camera[i+5]))

Hgijs = []
Hcijs = []
A = []
B = []
size = 0
for i in range(len(Hgs)):
    for j in range(i+1,len(Hgs)):
        size += 1
        Hgij = np.dot(np.linalg.inv(Hgs[j]),Hgs[i])
        Hgijs.append(Hgij)
        Pgij = np.dot(2,rot2quat_minimal(Hgij))
        
        Hcij = np.dot(Hcs[j],np.linalg.inv(Hcs[i]))
        Hcijs.append(Hcij)
        Pcij = np.dot(2,rot2quat_minimal(Hcij))
        
        A.append(skew(np.add(Pgij,Pcij)))
        B.append(np.subtract(Pcij,Pgij))
MA = np.asarray(A).reshape(size*3,3)
MB = np.asarray(B).reshape(size*3,1)
Pcg_  =  np.dot(np.linalg.pinv(MA),MB)
pcg_norm = np.dot(np.conjugate(Pcg_).T,Pcg_)
Pcg = np.sqrt(np.add(1,np.dot(Pcg_.T,Pcg_)))
Pcg = np.dot(np.dot(2,Pcg_),np.linalg.inv(Pcg))
Rcg = quatMinimal2rot(np.divide(Pcg,2)).reshape(3,3)


A = []
B = []
id = 0
for i in range(len(Hgs)):
    for j in range(i+1,len(Hgs)):
        Hgij = Hgijs[id]
        Hcij = Hcijs[id]
        A.append(np.subtract(Hgij[0:3,0:3],np.eye(3,3)))
        B.append(np.subtract(np.dot(Rcg,Hcij[0:3,3:4]),Hgij[0:3,3:4]))
        id += 1

MA = np.asarray(A).reshape(size*3,3)
MB = np.asarray(B).reshape(size*3,1)
Tcg = np.dot(np.linalg.pinv(MA),MB).reshape(3,)
print(tfs.affines.compose(Tcg,np.squeeze(Rcg),[1,1,1]))

运行结果:

python3 tsai.py                             
[[-0.01522186 -0.99983174 -0.01023609 -0.02079774]
 [ 0.99976822 -0.01506342 -0.01538198  0.00889827]
 [ 0.0152252  -0.01046786  0.99982929  0.08324514]
 [ 0.          0.          0.          1.        ]]
C++版本:
//Reference:
//R. Y. Tsai and R. K. Lenz, "A new technique for fully autonomous and efficient 3D robotics hand/eye calibration."
//In IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 345-358, June 1989.
//C++ code converted from Zoran Lazarevic's Matlab code:
//http://lazax.com/www.cs.columbia.edu/~laza/html/Stewart/matlab/handEye.m
static void calibrateHandEyeTsai(const std::vector& Hg, const std::vector& Hc,Mat& R_cam2gripper, Mat& t_cam2gripper)
{
    //Number of unique camera position pairs
    int K = static_cast((Hg.size()*Hg.size() - Hg.size()) / 2.0);
    //Will store: skew(Pgij+Pcij)
    Mat A(3*K, 3, CV_64FC1);
    //Will store: Pcij - Pgij
    Mat B(3*K, 1, CV_64FC1);

    std::vector vec_Hgij, vec_Hcij;
    vec_Hgij.reserve(static_cast(K));
    vec_Hcij.reserve(static_cast(K));

    int idx = 0;
    for (size_t i = 0; i             
关注
打赏
1666092100
查看更多评论
0.0396s