洛必达法则具体如下: 如有: lim x → a f ( x ) = 0 , lim x → a g ( x ) = 0 o r lim x → a f ( x ) = ∞ , lim x → a g ( x ) = ∞ \lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0 \;\;\mathrm{or}\;\; \lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty x→alimf(x)=0,x→alimg(x)=0orx→alimf(x)=∞,x→alimg(x)=∞ 则有(默认邻域内可导: lim x → a f ( x ) g ( x ) = lim x → a f ′ ( x ) g ′ ( x ) = A \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A x→alimg(x)f(x)=x→alimg′(x)f′(x)=A
证明: 先考虑 lim x → a f ( x ) = 0 , lim x → a g ( x ) = 0 \lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0 limx→af(x)=0,limx→ag(x)=0. 即: f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0 根据柯西中值定理,存在 m m m为 ( a , x ) (a,x) (a,x)间一点, 有: f ( x ) g ( x ) = f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( m ) g ′ ( m ) \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^\prime(m)}{g^\prime (m)} g(x)f(x)=g(x)−g(a)f(x)−f(a)=g′(m)f′(m) 令 x → a x\rightarrow a x→a, 此时 m → a m\rightarrow a m→a, 得到: lim x → a f ( x ) g ( x ) = lim x → a f ′ ( x ) g ′ ( x ) . \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a}\frac{f^\prime(x)}{g^\prime (x)}. x→alimg(x)f(x)=x→alimg′(x)f′(x).
接下来考虑 lim x → a f ( x ) = ∞ , lim x → a g ( x ) = ∞ \lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty limx→af(x)=∞,limx→ag(x)=∞, 我们首先有: f ( x ) g ( x ) = 1 g ( x ) 1 f ( x ) \frac{f(x)}{g(x)}=\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}} g(x)f(x)=f(x)1g(x)1, 显然当 x → a x \rightarrow a x→a时, 分子分母都趋近于0, 因此根据刚证明的结论,有:
lim x → a 1 g ( x ) 1 f ( x ) = lim x → a ( 1 g ( x ) ) ′ ( 1 f ( x ) ) ′ = lim x → a − 1 g ( x ) 2 g ( x ) ′ − 1 f ( x ) 2 f ( x ) ′ = lim x → a 1 g 2 ( x ) 1 f 2 ( x ) lim x → a g ( x ) ′ f ( x ) ′ \lim _{x \rightarrow a}\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}=\lim _{x \rightarrow a}\frac{(\frac{1}{g(x)})^\prime}{(\frac{1}{f(x)})^\prime}=\lim _{x \rightarrow a}\frac{-\frac{1}{g(x)^2}g(x)^\prime}{-\frac{1}{f(x)^2}f(x)^\prime}=\lim _{x \rightarrow a}\frac{\frac{1}{g^2(x)}}{\frac{1}{f^2(x)}}\lim _{x \rightarrow a}\frac{g(x)^\prime}{f(x)^\prime} x→alimf(x)1g(x)1=x→alim(f(x)1)′(g(x)1)′=x→alim−f(x)21f(x)′−g(x)21g(x)′=x→alimf2(x)1g2(x)1x→alimf(x)′g(x)′, 两边都除以 t 2 t^2 t2, t = lim x → a 1 g ( x ) 1 f ( x ) t=\lim _{x \rightarrow a}\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}} t=limx→af(x)1g(x)1, 有: lim x → a g ( x ) f ( x ) = lim x → a g ( x ) ′ f ( x ) ′ \lim_{x \rightarrow a}\frac{g(x)}{f(x)}=\lim _{x \rightarrow a}\frac{g(x)^\prime}{f(x)^\prime} x→alimf(x)g(x)=x→alimf(x)′g(x)′
证毕。