您当前的位置: 首页 > 

MateZero

暂无认证

  • 9浏览

    0关注

    92博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

GnosisSafe.sol 学习 (一)

MateZero 发布时间:2022-10-01 17:28:17 ,浏览量:9

GnosisSafe是以太坊区块链上最流行的多签钱包!它的最初版本叫 MultiSigWallet,现在新的钱包叫Gnosis Safe,意味着它不仅仅是钱包了。它自己的介绍为:以太坊上的最可信的数字资产管理平台(The most trusted platform to manage digital assets on Ethereum)。

学习完代理合约GnosisSafeProxy之后我们来学习实现合约,先从GnosisSafe.sol学习起。

一 合约源码

第一件事上源码:

// SPDX-License-Identifier: LGPL-3.0-only
pragma solidity >=0.7.0  uint256) public signedMessages;
    // Mapping to keep track of all hashes (message or transaction) that have been approve by ANY owners
    mapping(address => mapping(bytes32 => uint256)) public approvedHashes;

    // This constructor ensures that this contract can only be used as a master copy for Proxy contracts
    constructor() {
        // By setting the threshold it is not possible to call setup anymore,
        // so we create a Safe with 0 owners and threshold 1.
        // This is an unusable Safe, perfect for the singleton
        threshold = 1;
    }

    /// @dev Setup function sets initial storage of contract.
    /// @param _owners List of Safe owners.
    /// @param _threshold Number of required confirmations for a Safe transaction.
    /// @param to Contract address for optional delegate call.
    /// @param data Data payload for optional delegate call.
    /// @param fallbackHandler Handler for fallback calls to this contract
    /// @param paymentToken Token that should be used for the payment (0 is ETH)
    /// @param payment Value that should be paid
    /// @param paymentReceiver Adddress that should receive the payment (or 0 if tx.origin)
    function setup(
        address[] calldata _owners,
        uint256 _threshold,
        address to,
        bytes calldata data,
        address fallbackHandler,
        address paymentToken,
        uint256 payment,
        address payable paymentReceiver
    ) external {
        // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice
        setupOwners(_owners, _threshold);
        if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler);
        // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules
        setupModules(to, data);

        if (payment > 0) {
            // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself)
            // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment
            handlePayment(payment, 0, 1, paymentToken, paymentReceiver);
        }
        emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler);
    }

    /// @dev Allows to execute a Safe transaction confirmed by required number of owners and then pays the account that submitted the transaction.
    ///      Note: The fees are always transferred, even if the user transaction fails.
    /// @param to Destination address of Safe transaction.
    /// @param value Ether value of Safe transaction.
    /// @param data Data payload of Safe transaction.
    /// @param operation Operation type of Safe transaction.
    /// @param safeTxGas Gas that should be used for the Safe transaction.
    /// @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
    /// @param gasPrice Gas price that should be used for the payment calculation.
    /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
    /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
    /// @param signatures Packed signature data ({bytes32 r}{bytes32 s}{uint8 v})
    function execTransaction(
        address to,
        uint256 value,
        bytes calldata data,
        Enum.Operation operation,
        uint256 safeTxGas,
        uint256 baseGas,
        uint256 gasPrice,
        address gasToken,
        address payable refundReceiver,
        bytes memory signatures
    ) public payable virtual returns (bool success) {
        bytes32 txHash;
        // Use scope here to limit variable lifetime and prevent `stack too deep` errors
        {
            bytes memory txHashData =
                encodeTransactionData(
                    // Transaction info
                    to,
                    value,
                    data,
                    operation,
                    safeTxGas,
                    // Payment info
                    baseGas,
                    gasPrice,
                    gasToken,
                    refundReceiver,
                    // Signature info
                    nonce
                );
            // Increase nonce and execute transaction.
            nonce++;
            txHash = keccak256(txHashData);
            checkSignatures(txHash, txHashData, signatures);
        }
        address guard = getGuard();
        {
            if (guard != address(0)) {
                Guard(guard).checkTransaction(
                    // Transaction info
                    to,
                    value,
                    data,
                    operation,
                    safeTxGas,
                    // Payment info
                    baseGas,
                    gasPrice,
                    gasToken,
                    refundReceiver,
                    // Signature info
                    signatures,
                    msg.sender
                );
            }
        }
        // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500)
        // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150
        require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010");
        // Use scope here to limit variable lifetime and prevent `stack too deep` errors
        {
            uint256 gasUsed = gasleft();
            // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
            // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
            success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas);
            gasUsed = gasUsed.sub(gasleft());
            // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful
            // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert
            require(success || safeTxGas != 0 || gasPrice != 0, "GS013");
            // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls
            uint256 payment = 0;
            if (gasPrice > 0) {
                payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
            }
            if (success) emit ExecutionSuccess(txHash, payment);
            else emit ExecutionFailure(txHash, payment);
        }
        {
            if (guard != address(0)) {
                Guard(guard).checkAfterExecution(txHash, success);
            }
        }
    }

    function handlePayment(
        uint256 gasUsed,
        uint256 baseGas,
        uint256 gasPrice,
        address gasToken,
        address payable refundReceiver
    ) private returns (uint256 payment) {
        // solhint-disable-next-line avoid-tx-origin
        address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver;
        if (gasToken == address(0)) {
            // For ETH we will only adjust the gas price to not be higher than the actual used gas price
            payment = gasUsed.add(baseGas).mul(gasPrice  0, "GS001");
        checkNSignatures(dataHash, data, signatures, _threshold);
    }

    /**
     * @dev Checks whether the signature provided is valid for the provided data, hash. Will revert otherwise.
     * @param dataHash Hash of the data (could be either a message hash or transaction hash)
     * @param data That should be signed (this is passed to an external validator contract)
     * @param signatures Signature data that should be verified. Can be ECDSA signature, contract signature (EIP-1271) or approved hash.
     * @param requiredSignatures Amount of required valid signatures.
     */
    function checkNSignatures(
        bytes32 dataHash,
        bytes memory data,
        bytes memory signatures,
        uint256 requiredSignatures
    ) public view {
        // Check that the provided signature data is not too short
        require(signatures.length >= requiredSignatures.mul(65), "GS020");
        // There cannot be an owner with address 0.
        address lastOwner = address(0);
        address currentOwner;
        uint8 v;
        bytes32 r;
        bytes32 s;
        uint256 i;
        for (i = 0; i = requiredSignatures.mul(65), "GS021");

                // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes)
                require(uint256(s).add(32)  30 then default va (27,28) has been adjusted for eth_sign flow
                // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover
                currentOwner = ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", dataHash)), v - 4, r, s);
            } else {
                // Default is the ecrecover flow with the provided data hash
                // Use ecrecover with the messageHash for EOA signatures
                currentOwner = ecrecover(dataHash, v, r, s);
            }
            require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026");
            lastOwner = currentOwner;
        }
    }

    /// @dev Allows to estimate a Safe transaction.
    ///      This method is only meant for estimation purpose, therefore the call will always revert and encode the result in the revert data.
    ///      Since the `estimateGas` function includes refunds, call this method to get an estimated of the costs that are deducted from the safe with `execTransaction`
    /// @param to Destination address of Safe transaction.
    /// @param value Ether value of Safe transaction.
    /// @param data Data payload of Safe transaction.
    /// @param operation Operation type of Safe transaction.
    /// @return Estimate without refunds and overhead fees (base transaction and payload data gas costs).
    /// @notice Deprecated in favor of common/StorageAccessible.sol and will be removed in next version.
    function requiredTxGas(
        address to,
        uint256 value,
        bytes calldata data,
        Enum.Operation operation
    ) external returns (uint256) {
        uint256 startGas = gasleft();
        // We don't provide an error message here, as we use it to return the estimate
        require(execute(to, value, data, operation, gasleft()));
        uint256 requiredGas = startGas - gasleft();
        // Convert response to string and return via error message
        revert(string(abi.encodePacked(requiredGas)));
    }

    /**
     * @dev Marks a hash as approved. This can be used to validate a hash that is used by a signature.
     * @param hashToApprove The hash that should be marked as approved for signatures that are verified by this contract.
     */
    function approveHash(bytes32 hashToApprove) external {
        require(owners[msg.sender] != address(0), "GS030");
        approvedHashes[msg.sender][hashToApprove] = 1;
        emit ApproveHash(hashToApprove, msg.sender);
    }

    /// @dev Returns the chain id used by this contract.
    function getChainId() public view returns (uint256) {
        uint256 id;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            id := chainid()
        }
        return id;
    }

    function domainSeparator() public view returns (bytes32) {
        return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this));
    }

    /// @dev Returns the bytes that are hashed to be signed by owners.
    /// @param to Destination address.
    /// @param value Ether value.
    /// @param data Data payload.
    /// @param operation Operation type.
    /// @param safeTxGas Gas that should be used for the safe transaction.
    /// @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
    /// @param gasPrice Maximum gas price that should be used for this transaction.
    /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
    /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
    /// @param _nonce Transaction nonce.
    /// @return Transaction hash bytes.
    function encodeTransactionData(
        address to,
        uint256 value,
        bytes calldata data,
        Enum.Operation operation,
        uint256 safeTxGas,
        uint256 baseGas,
        uint256 gasPrice,
        address gasToken,
        address refundReceiver,
        uint256 _nonce
    ) public view returns (bytes memory) {
        bytes32 safeTxHash =
            keccak256(
                abi.encode(
                    SAFE_TX_TYPEHASH,
                    to,
                    value,
                    keccak256(data),
                    operation,
                    safeTxGas,
                    baseGas,
                    gasPrice,
                    gasToken,
                    refundReceiver,
                    _nonce
                )
            );
        return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash);
    }

    /// @dev Returns hash to be signed by owners.
    /// @param to Destination address.
    /// @param value Ether value.
    /// @param data Data payload.
    /// @param operation Operation type.
    /// @param safeTxGas Fas that should be used for the safe transaction.
    /// @param baseGas Gas costs for data used to trigger the safe transaction.
    /// @param gasPrice Maximum gas price that should be used for this transaction.
    /// @param gasToken Token address (or 0 if ETH) that is used for the payment.
    /// @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
    /// @param _nonce Transaction nonce.
    /// @return Transaction hash.
    function getTransactionHash(
        address to,
        uint256 value,
        bytes calldata data,
        Enum.Operation operation,
        uint256 safeTxGas,
        uint256 baseGas,
        uint256 gasPrice,
        address gasToken,
        address refundReceiver,
        uint256 _nonce
    ) public view returns (bytes32) {
        return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce));
    }
}

从源码头部可以看到,它导入并继承了很多合约,因此我们分开来学习。今天先学习 EtherPaymentFallback,SingletonModuleManager

二 EtherPaymentFallback.sol

源码为:

// SPDX-License-Identifier: LGPL-3.0-only
pragma solidity >=0.7.0 =0.7.0 =0.7.0  address) internal modules;

    function setupModules(address to, bytes memory data) internal {
        require(modules[SENTINEL_MODULES] == address(0), "GS100");
        modules[SENTINEL_MODULES] = SENTINEL_MODULES;
        if (to != address(0))
            // Setup has to complete successfully or transaction fails.
            require(execute(to, 0, data, Enum.Operation.DelegateCall, gasleft()), "GS000");
    }

    /// @dev Allows to add a module to the whitelist.
    ///      This can only be done via a Safe transaction.
    /// @notice Enables the module `module` for the Safe.
    /// @param module Module to be whitelisted.
    function enableModule(address module) public authorized {
        // Module address cannot be null or sentinel.
        require(module != address(0) && module != SENTINEL_MODULES, "GS101");
        // Module cannot be added twice.
        require(modules[module] == address(0), "GS102");
        modules[module] = modules[SENTINEL_MODULES];
        modules[SENTINEL_MODULES] = module;
        emit EnabledModule(module);
    }

    /// @dev Allows to remove a module from the whitelist.
    ///      This can only be done via a Safe transaction.
    /// @notice Disables the module `module` for the Safe.
    /// @param prevModule Module that pointed to the module to be removed in the linked list
    /// @param module Module to be removed.
    function disableModule(address prevModule, address module) public authorized {
        // Validate module address and check that it corresponds to module index.
        require(module != address(0) && module != SENTINEL_MODULES, "GS101");
        require(modules[prevModule] == module, "GS103");
        modules[prevModule] = modules[module];
        modules[module] = address(0);
        emit DisabledModule(module);
    }

    /// @dev Allows a Module to execute a Safe transaction without any further confirmations.
    /// @param to Destination address of module transaction.
    /// @param value Ether value of module transaction.
    /// @param data Data payload of module transaction.
    /// @param operation Operation type of module transaction.
    function execTransactionFromModule(
        address to,
        uint256 value,
        bytes memory data,
        Enum.Operation operation
    ) public virtual returns (bool success) {
        // Only whitelisted modules are allowed.
        require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104");
        // Execute transaction without further confirmations.
        success = execute(to, value, data, operation, gasleft());
        if (success) emit ExecutionFromModuleSuccess(msg.sender);
        else emit ExecutionFromModuleFailure(msg.sender);
    }

    /// @dev Allows a Module to execute a Safe transaction without any further confirmations and return data
    /// @param to Destination address of module transaction.
    /// @param value Ether value of module transaction.
    /// @param data Data payload of module transaction.
    /// @param operation Operation type of module transaction.
    function execTransactionFromModuleReturnData(
        address to,
        uint256 value,
        bytes memory data,
        Enum.Operation operation
    ) public returns (bool success, bytes memory returnData) {
        success = execTransactionFromModule(to, value, data, operation);
        // solhint-disable-next-line no-inline-assembly
        assembly {
            // Load free memory location
            let ptr := mload(0x40)
            // We allocate memory for the return data by setting the free memory location to
            // current free memory location + data size + 32 bytes for data size value
            mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
            // Store the size
            mstore(ptr, returndatasize())
            // Store the data
            returndatacopy(add(ptr, 0x20), 0, returndatasize())
            // Point the return data to the correct memory location
            returnData := ptr
        }
    }

    /// @dev Returns if an module is enabled
    /// @return True if the module is enabled
    function isModuleEnabled(address module) public view returns (bool) {
        return SENTINEL_MODULES != module && modules[module] != address(0);
    }

    /// @dev Returns array of modules.
    /// @param start Start of the page.
    /// @param pageSize Maximum number of modules that should be returned.
    /// @return array Array of modules.
    /// @return next Start of the next page.
    function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) {
        // Init array with max page size
        array = new address[](pageSize);

        // Populate return array
        uint256 moduleCount = 0;
        address currentModule = modules[start];
        while (currentModule != address(0x0) && currentModule != SENTINEL_MODULES && moduleCount =0.7.0 =0.7.0 =0.7.0  address) internal modules; 这里定义了一个map,注意它的key和value都是地址类型,这样可以前一个的value当成后一个的key,形成一个链条。

8.1 setupModules 函数

setupModules 函数用来初始化,为什么这样说呢? 显然下面的代码只能执行一次(初始化)

require(modules[SENTINEL_MODULES] == address(0), "GS100");
modules[SENTINEL_MODULES] = SENTINEL_MODULES;

然后当to不为零地址时,执行的是委托调用Enum.Operation.DelegateCall,,那么委托调用改变的是自己的状态变量,所以整体看来,这个函数是一个初始化函数(仅能执行一次)。

8.2 enableModule 函数

注意中写的比较清楚,将一个模块加入白名单,我们查看这个函数的逻辑可以发现,它将原哨兵模块(SENTINEL_MODULES) 对应的地址赋值给最新的模块,然后将哨兵模块的值设置为最新添加的模块。我们模拟一下连续调用本函数的结果

enableModule 0x3
enableModule 0x4
enableModule 0x5

得到的结果为:

modules[0x03] = 0x01
modules[0x04] = 0x03;
modules[0x05] = 0x04;
modules[0x01] = 0x05;

可以看到哨兵模块指向了最新的模块0x05,然后0x05指向0x04,0x04指向0x03,0x03指向了哨兵模块。这样形成了一条模块链,最新的模块在最后面。

注意:本函数有 authorized 限定符,看来是内部管理函数。

8.3 disableModule 函数

这个和 enableModule 刚好相反,移除相关模块。就是把模块链断开去掉一个节点,然后再把断开的两边连接上。

我们模拟一下调用本函数的结果:

disableModule 0x1 0x5

最后得到的模块链为

modules[0x03] = 0x01
modules[0x04] = 0x03;
modules[0x01] = 0x04;

可以看到,最后添加的0x5被移除了。

注意,同样对应的,它也有authorized修饰符。

8.4 execTransactionFromModule 函数

看注释,它允许添加的模块调用它来执行外部调用/自定义操作,因此,上面添加的模块是在这里使用的。 这个函数很简单,注意的是它执行调用后的返回值处理

success = execute(to, value, data, operation, gasleft());
if (success) emit ExecutionFromModuleSuccess(msg.sender);
else emit ExecutionFromModuleFailure(msg.sender);

注意,它执行失败后只是触发了一个事件,并没有重置交易,是因为这个合约本身并没有改变任何状态,所以无需重置整个交易。

它将对外调用执行的结果bool success并进一步返回,因此调用模块需要处理这个调用失败(success为false)的情况。

8.5 execTransactionFromModuleReturnData 函数

同execTransactionFromModule 函数,但是多返回了一个返回值。 外部调用很简单,同execTransactionFromModule,只是没有触发事件。 我们看一下接下来的内嵌汇编:

assembly {
     // Load free memory location
     let ptr := mload(0x40)
     // We allocate memory for the return data by setting the free memory location to
     // current free memory location + data size + 32 bytes for data size value
     mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
     // Store the size
     mstore(ptr, returndatasize())
     // Store the data
     returndatacopy(add(ptr, 0x20), 0, returndatasize())
     // Point the return data to the correct memory location
     returnData := ptr
}
  1. 得到自由内存指针地址(存在0x40)
  2. 将自由内存指针地址重新设定在当前地址+ 数据大小+ 长度前缀 的地址,多出来的空间(长度前缀 + 数据大小 )为是了构造 返回值returnData
  3. 写入长度前缀,从旧自由内存指针地址开始写入一个word(32字节),值为返回的数据大小。这里的返回数据哪来的呢?因为本函数调用了execTransactionFromModule函数,虽然execTransactionFromModule函数是个public函数,但是我们这里却只是内部跳转,并没有涉及到消息调用,因此你可以认为是execTransactionFromModule的代码直接复制了过来。而execTransactionFromModule又调用了execute,这同样是一个内部调用,因此返回值来源于execute的执行结果。 注意,这里只有消息调用(合约之间或者EOA与合约之间)才会有returndata,它并不是普通函数之间相互调用的返回值(函数返回值是Solidity语言)。
  4. 将returndata的内容复制到内存中,returndatacopy操作码我们已经多次见到,为什么从add(ptr, 0x20)开始呢,因为ptr开始的32字节我们在上一步存入了长度前缀。
  5. 最后设定返回Solidity返回数据returnData的内存地址,从prt开始分别为它的长度前缀和实际数据
8.6 isModuleEnabled 函数

很简单,判断模块是否白名单

8.7 getModulesPaginated 函数

分页获取白名单模块,返回一个白名单数组。这里为什么要采用分页呢?因为理论上,可以注册个无数模块,因此返回的数据可以无限大。然而却是有gasLimit的,所以数组过大会导致调用失败,因此采用了分页模式,可以调整返回的数组大小和起始位置。

这里view类型的函数同样也会受到gas限制,同样也会gas超限。

本函数的逻辑使用了一个while从后向前循环模块链,取出分页大小的模块。如果不足(没有注册或者为哨兵模块),则立刻终止。

一个比较实用的技巧是最后的内嵌汇编,用来改变返回数组的大小。

 // Set correct size of returned array
// solhint-disable-next-line no-inline-assembly
assembly {
    mstore(array, moduleCount)
}

我们知道,数组在汇编中的内存layout也是值为内存地址,开始32字节存的是数组长度,后面再接数据内容。

由于我们分页获取的数组可能未填充满,比如取10个,我们只有4个。因此后面6个元素为空的。此时我们返回空元素的话会浪费空间。因此,可以直接修改返回的数据大小为4,这里就示例了一种直接修改方法。

直接将数组地址开始的32字节(存储数组大小)赋值为实际数组大小。 这是一个很实用的技巧,我们平常在遇到数组不能填充满时也可以使用此技巧。

修改大小后本来返回10个元素的数组变成了返回4个元素的数组,而有效内容是相同的

关注
打赏
1648304347
查看更多评论
立即登录/注册

微信扫码登录

0.0404s