- 1.3.1 概率的可加性
- 1.3.2 概率的单调性
- 1.3.3 概率的加法公式
- 1.3.4 概率的连续性
性质1: P ( Ω ) = 0 P(\Omega)=0 P(Ω)=0
证明:由于任何事件与不可能事件之并仍是此事件本身,所以 Ω = Ω ∪ ∅ ∪ ∅ ∪ . . . ∪ ∅ ∪ . . . \Omega=\Omega\cup\varnothing\cup\varnothing\cup...\cup\varnothing\cup... Ω=Ω∪∅∪∅∪...∪∅∪... 因为不可能事件与任何事件是互不相容的,故由可列可加性公理得 P ( Ω ) = P ( Ω ) + P ( ∅ ) + P ( ∅ ) + . . . + P ( ∅ ) + . . . P(\Omega)=P(\Omega)+P(\varnothing)+P(\varnothing)+...+P(\varnothing)+... P(Ω)=P(Ω)+P(∅)+P(∅)+...+P(∅)+... 从而由 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1得 P ( ∅ ) + P ( ∅ ) + . . . = 0 P(\varnothing)+P(\varnothing)+...=0 P(∅)+P(∅)+...=0 再由非负性公理,必有 P ( Ω ) = 0 P(\Omega)=0 P(Ω)=0
结论得证
1.3.1 概率的可加性性质2(有限可加性):若有限个事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An互不相容,则有 P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup\limits_{i = 1}^n {{A_i}} ) = \sum\limits_{i = 1}^n {P({A_i})} P(i=1⋃nAi)=i=1∑nP(Ai) 证明:对 A 1 , A 2 , . . . , A n , ∅ , ∅ , . . . A_1,A_2,...,A_n,\varnothing,\varnothing,... A1,A2,...,An,∅,∅,...应用可列可加性,得
P ( A 1 ∪ A 2 ∪ . . . ∪ A n ) = P ( A 1 ∪ A 2 ∪ . . . ∪ A n ∪ ∅ ∪ ∅ ∪ . . . ) = P ( A 1 ) + P ( A 2 ) + . . . + P ( A n ) + P ( ∅ ) + P ( ∅ ) + . . . = P ( A 1 ) + P ( A 2 ) + . . . + P ( A n ) \begin{aligned} P({A_1} \cup {A_2} \cup ... \cup {A_n}) &= P({A_1} \cup {A_2} \cup ... \cup {A_n} \cup \varnothing \cup \varnothing \cup ...) \\ &= P({A_1}) + P({A_2}) + ... + P({A_n}) + P(\varnothing ) + P(\varnothing ) + ... \\ &= P({A_1}) + P({A_2}) + ... + P({A_n})\\ \end{aligned} P(A1∪A2∪...∪An)=P(A1∪A2∪...∪An∪∅∪∅∪...)=P(A1)+P(A2)+...+P(An)+P(∅)+P(∅)+...=P(A1)+P(A2)+...+P(An)
结论得证
性质3:对任一事件A,有 P ( A ‾ ) = 1 − P ( A ) P(\overline A ) = 1 - P(A) P(A)=1−P(A)
证明:因为 A A A与 A ‾ \overline A A互不相容,且 Ω = A ∪ A ‾ \Omega = A \cup \overline A Ω=A∪A。所以由概率的正则性和有限可加性得 1 = P ( A ) + P ( A ‾ ) 1 = P(A) + P(\overline A ) 1=P(A)+P(A),由此可得 P ( A ‾ ) = 1 − P ( A ) P(\overline A ) = 1 - P(A) P(A)=1−P(A)
1.3.2 概率的单调性性质4:若 A ⊃ B A \supset B A⊃B,则 P ( A − B ) = P ( A ) − P ( B ) P(A - B) = P(A) - P(B) P(A−B)=P(A)−P(B)
证明:因为 A ⊃ B A \supset B A⊃B,所以 A = B ∪ ( A − B ) A = B \cup (A - B) A=B∪(A−B) 且 B B B与 A − B A - B A−B互不相容,由有限可加性得 P ( A ) = P ( B ) + P ( A − B ) P(A) = P(B) + P(A - B) P(A)=P(B)+P(A−B) 即得 P ( A − B ) = P ( A ) − P ( B ) P(A - B) = P(A) - P(B) P(A−B)=P(A)−P(B) 结论得证
推论(单调性):若 A ⊃ B A \supset B A⊃B,则 P ( A ) ⩾ P ( B ) P(A) \geqslant P(B) P(A)⩾P(B)
性质5:对任意两个事件 A , B A,B A,B,有 P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(A−B)=P(A)−P(AB)
证明:因为 A − B = A − A B A - B = A - AB A−B=A−AB,且 A B ⊂ A AB \subset A AB⊂A,所以由性质4得 P ( A − B ) = P ( A − A B ) = P ( A ) − P ( A B ) P(A - B) = P(A - AB) = P(A) - P(AB) P(A−B)=P(A−AB)=P(A)−P(AB) 结论得证
1.3.3 概率的加法公式性质6(加法公式):对任意两个事件 A , B A,B A,B,有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A) + P(B) - P(AB) P(A∪B)=P(A)+P(B)−P(AB) 对任意n个事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,有 P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ⩽ i < j ⩽ n P ( A i A j ) + ∑ 1 ⩽ i < j < k ⩽ n P ( A i A j A k ) + . . . + ( − 1 ) n − 1 P ( A 1 A 2 . . . A n ) \begin{aligned} P(\bigcup\limits_{i = 1}^n {{A_i}} ) &= \sum\limits_{i = 1}^n {P({A_i}) - \sum\limits_{1 \leqslant i\lt j \leqslant n}^{} {P({A_i}{A_j})} } + \\ & \sum\limits_{1 \leqslant i\lt j \lt k \leqslant n}^{} {P({A_i}{A_j}{A_k}) + ... + {{( - 1)}^{n - 1}}P({A_1}{A_2}...{A_n})} \end{aligned} P(i=1⋃nAi)=i=1∑nP(Ai)−1⩽i{A_i}} ) \leqslant \sum\limits_{i = 1}^n {P({A_i})} {F_n}} {F_n}} {E_n}} {E_n}}
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?