作为在后端圈开车的多年老司机,是不是经常听到过:
- “MySQL 单表最好不要超过 2000w”
- “单表超过 2000w 就要考虑数据迁移了”
- “你这个表数据都马上要到 2000w 了,难怪查询速度慢”
这些名言民语就和 “群里只讨论技术,不开车,开车速度不要超过 120 码,否则自动踢群”,只听过,没试过,哈哈。
下面我们就把车速踩到底,干到 180 码试试…….
实验实验一把看看… 建一张表
CREATE TABLE person(
id int NOT NULL AUTO_INCREMENT PRIMARY KEY comment '主键',
person_id tinyint not null comment '用户id',
person_name VARCHAR(200) comment '用户名称',
gmt_create datetime comment '创建时间',
gmt_modified datetime comment '修改时间'
) comment '人员信息表';
插入一条数据
insert into person values(1,1,'user_1', NOW(), now());
利用 MySQL 伪列 rownum 设置伪列起始点为 1
select (@i:=@i+1) as rownum, person_name from person, (select @i:=100) as init;
set @i=1;
运行下面的 sql,连续执行 20 次,就是 2 的 20 次方约等于 100w 的数据;执行 23 次就是 2 的 23 次方约等于 800w , 如此下去即可实现千万测试数据的插入。
如果不想翻倍翻倍的增加数据,而是想少量,少量的增加,有个技巧,就是在 SQL 的后面增加 where 条件,如 id > 某一个值去控制增加的数据量即可。
insert into person(id, person_id, person_name, gmt_create, gmt_modified)
select @i:=@i+1,
left(rand()*10,10) as person_id,
concat('user_',@i%2048),
date_add(gmt_create,interval + @i*cast(rand()*100 as signed) SECOND),
date_add(date_add(gmt_modified,interval +@i*cast(rand()*100 as signed) SECOND), interval + cast(rand()*1000000 as signed) SECOND)
from person;
此处需要注意的是,也许你在执行到近 800w 或者 1000w 数据的时候,会报错:The total number of locks exceeds the lock table size,这是由于你的临时表内存设置的不够大,只需要扩大一下设置参数即可。
SET GLOBAL tmp_table_size =512*1024*1024; (512M)
SET global innodb_buffer_pool_size= 1*1024*1024*1024 (1G);
先来看一组测试数据,这组数据是在 mysql8.0 的版本,并且是在我本机上,由于本机还跑着 idea , 浏览器等各种工具,所以并不是机器配置就是用于数据库配置,所以测试数据只限于参考。
看到这组数据似乎好像真的和标题对应,当数据达到 2000w 以后,查询时长急剧上升,难道这就是铁律吗?
那下面我们就来看看这个建议值 2000w 是怎么来的?
单表数量限制首先我们先想想数据库单表行数最大多大?
CREATE TABLE person(
id int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY comment '主键',
person_id tinyint not null comment '用户id',
person_name VARCHAR(200) comment '用户名称',
gmt_create datetime comment '创建时间',
gmt_modified datetime comment '修改时间'
) comment '人员信息表';
看看上面的建表 sql,id 是主键,本身就是唯一的,也就是说主键的大小可以限制表的上限。
如果主键声明 int 大小,也就是 32 位,那么支持 2^32-1 ~~21 亿;如果是 bigint,那就是 2^62-1 (36893488147419103232),难以想象这个的多大了,一般还没有到这个限制之前,可能数据库已经爆满了!!
有人统计过,如果建表的时候,自增字段选择无符号的 bigint , 那么自增长最大值是 18446744073709551615,按照一秒新增一条记录的速度,大约什么时候能用完?
下面我们再来看看索引的结构,对了,我们下面讲内容都是基于 Innodb 引擎的,大家都知道 Innodb 的索引内部用的是 B+ 树
这张表数据,在硬盘上存储也是类似如此的,它实际是放在一个叫 person.ibd (innodb data)的文件中,也叫做表空间;虽然数据表中,他们看起来是一条连着一条,但是实际上在文件中它被分成很多小份的数据页,而且每一份都是 16K。
大概就像下面这样,当然这只是我们抽象出来的,在表空间中还有段、区、组等很多概念,但是我们需要跳出来看。
实际页的内部结构像是下面这样的:
从图中可以看出,一个 InnoDB 数据页的存储空间大致被划分成了 7 个部分,有的部分占用的字节数是确定的,有的部分占用的字节数是不确定的。
在页的 7 个组成部分中,我们自己存储的记录会按照我们指定的行格式存储到 User Records 部分。
但是在一开始生成页的时候,其实并没有 User Records 这个部分,每当我们插入一条记录,都会从 Free Space 部分,也就是尚未使用的存储空间中申请一个记录大小的空间划分到 User Records 部分,当 Free Space 部分的空间全部被 User Records 部分替代掉之后,也就意味着这个页使用完了,如果还有新的记录插入的话,就需要去申请新的页了。
这个过程的图示如下:
刚刚上面说到了数据的新增的过程。
那下面就来说说,数据的查找过程,假如我们需要查找一条记录,我们可以把表空间中的每一页都加载到内存中,然后对记录挨个判断是不是我们想要的。
在数据量小的时候,没啥问题,内存也可以撑。但是现实就是这么残酷,不会给你这个局面。
为了解决这问题,mysql 中就有了索引的概念,大家都知道索引能够加快数据的查询,那到底是怎么个回事呢?下面我就来看看。
索引的数据结构在 mysql 中索引的数据结构和刚刚描述的页几乎是一模一样的,而且大小也是 16K,。
但是在索引页中记录的是页 (数据页,索引页) 的最小主键 id 和页号,以及在索引页中增加了层级的信息,从 0 开始往上算,所以页与页之间就有了上下层级的概念。
看到这个图之后,是不是有点似曾相似的感觉,是不是像一棵二叉树啊,对,没错!它就是一棵树。
只不过我们在这里只是简单画了三个节点,2 层结构的而已,如果数据多了,可能就会扩展到 3 层的树,这个就是我们常说的 B+ 树,最下面那一层的 page level =0, 也就是叶子节点,其余都是非叶子节点。
看上图中,我们是单拿一个节点来看,首先它是一个非叶子节点(索引页),在它的内容区中有 id 和 页号地址两部分:
- id :对应页中记录的最小记录 id 值;
- 页号:地址是指向对应页的指针;
而数据页与此几乎大同小异,区别在于数据页记录的是真实的行数据而不是页地址,而且 id 的也是顺序的。
单表建议值下面我们就以 3 层,2 分叉(实际中是 M 分叉)的图例来说明一下查找一个行数据的过程。
比如说我们需要查找一个 id=6 的行数据:
- 因为在非叶子节点中存放的是页号和该页最小的 id,所以我们从顶层开始对比,首先看页号 10 中的目录,有 [id=1, 页号 = 20],[id=5, 页号 = 30], 说明左侧节点最小 id 为 1,右侧节点最小 id 是 5。6>5, 那按照二分法查找的规则,肯定就往右侧节点继续查找;
- 找到页号 30 的节点后,发现这个节点还有子节点(非叶子节点),那就继续比对,同理,6>5 && 6
关注打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?