目录
设置TensorFlow.js代码
GoEmotion数据集
言语包
训练AI模型
检测文本中的情绪
终点线
下一步是什么?
- 下载项目代码-9.9 MB
TensorFlow + JavaScript。现在,最流行、最先进的AI框架支持地球上使用最广泛的编程语言。因此,让我们在Web浏览器中通过深度学习使文本和NLP(自然语言处理)聊天机器人神奇地发生,使用TensorFlow.js通过WebGL加速GPU!
婴儿学习第一个单词时,不会在字典中查询其含义;他们与表情产生情感联系。识别语音中的情感是理解自然语言的关键。我们如何教计算机通过深度学习的力量来确定句子中的情感?
我假设您熟悉Tensorflow.js,并且可以轻松地使用它创建和训练神经网络。
如果您是TensorFlow.js的新手,建议您首先阅读一下指南,即使用TensorFlow.js在浏览器中进行深度学习入门。
设置TensorFlow.js代码该项目将完全在网页中运行。这是一个包含TensorFlow.js的入门模板页面,并为我们的代码保留了一部分。让我们在此页面上添加两个文本元素以显示情绪检测,以及稍后将需要的两个实用程序功能。
Detecting Emotion in Text: Chatbots in the Browser with TensorFlow.js
Loading...
function setText( text ) {
document.getElementById( "status" ).innerText = text;
}
function shuffleArray( array ) {
for( let i = array.length - 1; i > 0; i-- ) {
const j = Math.floor( Math.random() * ( i + 1 ) );
[ array[ i ], array[ j ] ] = [ array[ j ], array[ i ] ];
}
}
(async () => {
// Your Code Goes Here
})();
GoEmotion数据集
我们将用于训练神经网络的数据来自Google Research GitHub存储库中的GoEmotions数据集。它由58个英文Reddit评论(包含27种情感类别)组成。如果愿意,您可以使用全套训练,但是我们只需要为该项目提供一小部分子集,因此下载此较小的测试集就足够了。
将文件放在项目文件夹中,您的网页可以在其中从本地Web服务器检索该"web"文件。
在脚本的顶部,定义一个情感类别列表,该列表将用于训练和预测:
const emotions = [
"admiration",
"amusement",
"anger",
"annoyance",
"approval",
"caring",
"confusion",
"curiosity",
"desire",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"excitement",
"fear",
"gratitude",
"grief",
"joy",
"love",
"nervousness",
"optimism",
"pride",
"realization",
"relief",
"remorse",
"sadness",
"surprise",
"neutral"
];
我们下载的测试集.tsv文件包含文本行,每个文本行都包含制表符分隔的元素:句子、情感类别标识符和唯一的句子标识符。我们可以像这样加载数据并随机化代码中的文本行:
(async () => {
// Load GoEmotions data (https://github.com/google-research/google-research/tree/master/goemotions)
let data = await fetch( "web/emotions.tsv" ).then( r => r.text() );
let lines = data.split( "\n" ).filter( x => !!x ); // Split & remove empty lines
// Randomize the lines
shuffleArray( lines );
})();
言语包
在将句子传递到神经网络之前,需要将它们转换为一组数字。
一个经典、简单的方法是拥有我们希望使用的完整单词词汇表,并创建一个长度等于单词表列表大小的向量,其中每个分量都映射到列表中的单词之一。然后,对于句子中的每个唯一单词,我们可以将匹配部分设置为1,其余部分设置为0。
例如,如果你使用词汇表映射到[ "deep","learning","in","the","browser","detect","emotion"],那么句子“detect emotion in my browser”将生成一个向量[ 0, 0, 1, 0, 1, 1, 1 ]。
在我们的代码中,我们将从经过改组的经过解析的文本集中提取200条示例行,并使用它创建一个词汇表,并生成用于训练的向量。让我们还生成预期的输出分类向量,这些向量映射到句子的情感类别。
// Process 200 lines to generate a "bag of words"
const numSamples = 200;
let bagOfWords = {};
let allWords = [];
let wordReference = {};
let sentences = lines.slice( 0, numSamples ).map( line => {
let sentence = line.split( "\t" )[ 0 ];
return sentence;
});
sentences.forEach( s => {
let words = s.replace(/[^a-z ]/gi, "").toLowerCase().split( " " ).filter( x => !!x );
words.forEach( w => {
if( !bagOfWords[ w ] ) {
bagOfWords[ w ] = 0;
}
bagOfWords[ w ]++; // Counting occurrence just for word frequency fun
});
});
allWords = Object.keys( bagOfWords );
allWords.forEach( ( w, i ) => {
wordReference[ w ] = i;
});
// Generate vectors for sentences
let vectors = sentences.map( s => {
let vector = new Array( allWords.length ).fill( 0 );
let words = s.replace(/[^a-z ]/gi, "").toLowerCase().split( " " ).filter( x => !!x );
words.forEach( w => {
if( w in wordReference ) {
vector[ wordReference[ w ] ] = 1;
}
});
return vector;
});
let outputs = lines.slice( 0, numSamples ).map( line => {
let categories = line.split( "\t" )[ 1 ].split( "," ).map( x => parseInt( x ) );
let output = [];
for( let i = 0; i < emotions.length; i++ ) {
output.push( categories.includes( i ) ? 1 : 0 );
}
return output;
});
训练AI模型
现在是有趣的部分。我们可以定义一个具有三个隐藏层的模型,从而得到长度为27(情感类别的数量)的分类矢量,其中最大值的索引是我们预测的情感标识符。
// Define our model with several hidden layers
const model = tf.sequential();
model.add(tf.layers.dense( { units: 100, activation: "relu", inputShape: [ allWords.length ] } ) );
model.add(tf.layers.dense( { units: 50, activation: "relu" } ) );
model.add(tf.layers.dense( { units: 25, activation: "relu" } ) );
model.add(tf.layers.dense( {
units: emotions.length,
activation: "softmax"
} ) );
model.compile({
optimizer: tf.train.adam(),
loss: "categoricalCrossentropy",
metrics: [ "accuracy" ]
});
最后,我们可以将输入数据转换为张量并训练网络。
const xs = tf.stack( vectors.map( x => tf.tensor1d( x ) ) );
const ys = tf.stack( outputs.map( x => tf.tensor1d( x ) ) );
await model.fit( xs, ys, {
epochs: 50,
shuffle: true,
callbacks: {
onEpochEnd: ( epoch, logs ) => {
setText( `Training... Epoch #${epoch} (${logs.acc})` );
console.log( "Epoch #", epoch, logs );
}
}
} );
检测文本中的情绪
是时候让AI发挥其魔力了。
为了测试经过训练的网络,我们将从整个列表中随机选择一行文本,并从一袋单词中生成输入向量,然后将其传递给模型以预测类别。这部分代码将在5秒钟的计时器上运行,以每次加载新的一行文本。
// Test prediction every 5s
setInterval( async () => {
// Pick random text
let line = lines[ Math.floor( Math.random() * lines.length ) ];
let sentence = line.split( "\t" )[ 0 ];
let categories = line.split( "\t" )[ 1 ].split( "," ).map( x => parseInt( x ) );
document.getElementById( "text" ).innerText = sentence;
// Generate vectors for sentences
let vector = new Array( allWords.length ).fill( 0 );
let words = sentence.replace(/[^a-z ]/gi, "").toLowerCase().split( " " ).filter( x => !!x );
words.forEach( w => {
if( w in wordReference ) {
vector[ wordReference[ w ] ] = 1;
}
});
let prediction = await model.predict( tf.stack( [ tf.tensor1d( vector ) ] ) ).data();
// Get the index of the highest value in the prediction
let id = prediction.indexOf( Math.max( ...prediction ) );
setText( `Result: ${emotions[ id ]}, Expected: ${emotions[ categories[ 0 ] ]}` );
}, 5000 );
这是完整的代码供参考:
Detecting Emotion in Text: Chatbots in the Browser with TensorFlow.js
Loading...
const emotions = [
"admiration",
"amusement",
"anger",
"annoyance",
"approval",
"caring",
"confusion",
"curiosity",
"desire",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"excitement",
"fear",
"gratitude",
"grief",
"joy",
"love",
"nervousness",
"optimism",
"pride",
"realization",
"relief",
"remorse",
"sadness",
"surprise",
"neutral"
];
function setText( text ) {
document.getElementById( "status" ).innerText = text;
}
function shuffleArray( array ) {
for( let i = array.length - 1; i > 0; i-- ) {
const j = Math.floor( Math.random() * ( i + 1 ) );
[ array[ i ], array[ j ] ] = [ array[ j ], array[ i ] ];
}
}
(async () => {
// Load GoEmotions data (https://github.com/google-research/google-research/tree/master/goemotions)
let data = await fetch( "web/emotions.tsv" ).then( r => r.text() );
let lines = data.split( "\n" ).filter( x => !!x ); // Split & remove empty lines
// Randomize the lines
shuffleArray( lines );
// Process 200 lines to generate a "bag of words"
const numSamples = 200;
let bagOfWords = {};
let allWords = [];
let wordReference = {};
let sentences = lines.slice( 0, numSamples ).map( line => {
let sentence = line.split( "\t" )[ 0 ];
return sentence;
});
sentences.forEach( s => {
let words = s.replace(/[^a-z ]/gi, "").toLowerCase().split( " " ).filter( x => !!x );
words.forEach( w => {
if( !bagOfWords[ w ] ) {
bagOfWords[ w ] = 0;
}
bagOfWords[ w ]++; // Counting occurrence just for word frequency fun
});
});
allWords = Object.keys( bagOfWords );
allWords.forEach( ( w, i ) => {
wordReference[ w ] = i;
});
// Generate vectors for sentences
let vectors = sentences.map( s => {
let vector = new Array( allWords.length ).fill( 0 );
let words = s.replace(/[^a-z ]/gi, "").toLowerCase().split( " " ).filter( x => !!x );
words.forEach( w => {
if( w in wordReference ) {
vector[ wordReference[ w ] ] = 1;
}
});
return vector;
});
let outputs = lines.slice( 0, numSamples ).map( line => {
let categories = line.split( "\t" )[ 1 ].split( "," ).map( x => parseInt( x ) );
let output = [];
for( let i = 0; i < emotions.length; i++ ) {
output.push( categories.includes( i ) ? 1 : 0 );
}
return output;
});
// Define our model with several hidden layers
const model = tf.sequential();
model.add(tf.layers.dense( { units: 100, activation: "relu", inputShape: [ allWords.length ] } ) );
model.add(tf.layers.dense( { units: 50, activation: "relu" } ) );
model.add(tf.layers.dense( { units: 25, activation: "relu" } ) );
model.add(tf.layers.dense( {
units: emotions.length,
activation: "softmax"
} ) );
model.compile({
optimizer: tf.train.adam(),
loss: "categoricalCrossentropy",
metrics: [ "accuracy" ]
});
const xs = tf.stack( vectors.map( x => tf.tensor1d( x ) ) );
const ys = tf.stack( outputs.map( x => tf.tensor1d( x ) ) );
await model.fit( xs, ys, {
epochs: 50,
shuffle: true,
callbacks: {
onEpochEnd: ( epoch, logs ) => {
setText( `Training... Epoch #${epoch} (${logs.acc})` );
console.log( "Epoch #", epoch, logs );
}
}
} );
// Test prediction every 5s
setInterval( async () => {
// Pick random text
let line = lines[ Math.floor( Math.random() * lines.length ) ];
let sentence = line.split( "\t" )[ 0 ];
let categories = line.split( "\t" )[ 1 ].split( "," ).map( x => parseInt( x ) );
document.getElementById( "text" ).innerText = sentence;
// Generate vectors for sentences
let vector = new Array( allWords.length ).fill( 0 );
let words = sentence.replace(/[^a-z ]/gi, "").toLowerCase().split( " " ).filter( x => !!x );
words.forEach( w => {
if( w in wordReference ) {
vector[ wordReference[ w ] ] = 1;
}
});
let prediction = await model.predict( tf.stack( [ tf.tensor1d( vector ) ] ) ).data();
// Get the index of the highest value in the prediction
let id = prediction.indexOf( Math.max( ...prediction ) );
setText( `Result: ${emotions[ id ]}, Expected: ${emotions[ categories[ 0 ] ]}` );
}, 5000 );
})();
下一步是什么?
在本文中,您学习了如何使用浏览器中的TensorFlow训练一个AI模型,该模型可以为任何英语句子计算27种情绪之一。尝试将其numSamples从200增加到1000,甚至是整个列表,然后看看您的情绪检测器是否可以提高其准确性。现在,如果我们想让我们的神经网络解析文本并将其分类为27个以上呢?
请继续阅读本系列的下一篇文章中,使用TensorFlow.js在浏览器中训练Trivia Expert Chatbot!
https://www.codeproject.com/Articles/5282687/AI-Chatbots-With-TensorFlow-js-Detecting-Emotion-i