1)实验平台:正点原子MiniPro H750开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id=677017430560 3)全套实验源码+手册+视频下载地址:http://www.openedv.com/thread-336836-1-1.html 4)对正点原子STM32感兴趣的同学可以加群讨论:879133275
第十二章 SYSTEM文件夹介绍SYSTEM文件夹里面的代码由正点原子提供,是STM32H7xx系列的底层核心驱动函数,可以用在STM32H7xx系列的各个型号上面,方便大家快速构建自己的工程。 SYSTEM文件夹下包含了delay、sys、usart等三个文件夹。分别包含了delay.c、sys.c、usart.c及其头文件。通过这3个c文件,可以快速的给任何一款STM32H7构建最基本的框架,使用起来是很方便的。 本章,我们将向大家介绍这些代码,通过这章的学习,大家将了解到这些代码的由来,也希望大家可以灵活使用SYSTEM文件夹提供的函数,来快速构建工程,并实际应用到自己的项目中去。 本章将分为如下几个小节: 12.1 deley文件夹代码介绍 12.2 sys文件夹代码介绍 12.3 usart文件夹代码介绍
12.1 deley文件夹代码介绍delay文件夹内包含了delay.c和delay.h两个文件,这两个文件用来实现系统的延时功能,其中包含7个函数:
void delay_osschedlock(void);
void delay_osschedunlock(void);
void delay_ostimedly(uint32_t ticks);
void SysTick_Handler(void);
void delay_init(uint16_t sysclk);
void delay_us(uint32_t nus);
void delay_ms(uint16_t nms);
前面4个函数,仅在支持操作系统(OS)的时候,需要用到,而后面3个函数,则不论是否支持OS都需要用到。 在介绍这些函数之前,我们先了解一下编程思想:CM7内核和CM3/CM4内核一样,内部都包含了一个SysTick定时器,SysTick 是一个24 位的向下递减的计数定时器,当计数值减到0 时,将从RELOAD 寄存器中自动重装载定时初值。只要不把它在SysTick 控制及状态寄存器中的使能位清除,就永不停息。SysTick在《STM32H7xx参考手册_V7(英文版).pdf》里面基本没有介绍,其详细介绍,请参阅《STM32H7编程手册.pdf》第212页,4.4节。我们就是利用STM32的内部SysTick来实现延时的,这样既不占用中断,也不占用系统定时器。 这里我们将介绍的是正点原子提供的最新版本的延时函数,该版本的延时函数支持在任意操作系统(OS)下面使用,它可以和操作系统共用SysTick定时器。 这里,我们以UCOSII为例,介绍如何实现操作系统和我们的delay函数共用SysTick定时器。首先,我们简单介绍下UCOSII的时钟:ucos运行需要一个系统时钟节拍(类似 “心跳”),而这个节拍是固定的(由OS_TICKS_PER_SEC宏定义设置),比如要求5ms一次(即可设置:OS_TICKS_PER_SEC=200),在STM32上面,一般是由SysTick来提供这个节拍,也就是SysTick要设置为5ms中断一次,为ucos提供时钟节拍,而且这个时钟一般是不能被打断的(否则就不准了)。 因为在ucos下systick不能再被随意更改,如果我们还想利用systick来做delay_us或者delay_ms的延时,就必须想点办法了,这里我们利用的是时钟摘取法。以delay_us为例,比如delay_us(50),在刚进入delay_us的时候先计算好这段延时需要等待的systick计数次数,这里为50480(假设系统时钟为480Mhz,因为systick的频率等于系统时钟频率,那么systick每增加1,就是1/480us),然后我们就一直统计systick的计数变化,直到这个值变化了50480,一旦检测到变化达到或者超过这个值,就说明延时50us时间到了。这样,我们只是抓取SysTick计数器的变化,并不需要修改SysTick的任何状态,完全不影响SysTick作为UCOS时钟节拍的功能,这就是实现delay和操作系统共用SysTick定时器的原理。 下面我们开始介绍这几个函数。
12.1.1 操作系统支持宏定义及相关函数当需要delay_ms和delay_us支持操作系统(OS)的时候,我们需要用到3个宏定义和4个函数,宏定义及函数代码如下:
/*
* 当delay_us/delay_ms需要支持OS的时候需要三个与OS相关的宏定义和函数来支持
* 首先是3个宏定义:
* delay_osrunning :用于表示OS当前是否正在运行,以决定是否可以使用相关函数
* delay_ostickspersec:用于表示OS设定的时钟节拍,delay_init
* 将根据这个参数来初始化systick
* delay_osintnesting :用于表示OS中断嵌套级别,因为中断里面不可以调度,
* delay_ms使用该参数来决定如何运行
* 然后是3个函数:
* delay_osschedlock :用于锁定OS任务调度,禁止调度
* delay_osschedunlock:用于解锁OS任务调度,重新开启调度
* delay_ostimedly :用于OS延时,可以引起任务调度.
*
* 本例程仅作UCOSII和UCOSIII的支持,其他OS,请自行参考着移植
*/
/* 支持UCOSII */
#ifdef OS_CRITICAL_METHOD /* OS_CRITICAL_METHOD定义了,说明要支持UCOSII */
#define delay_osrunning OSRunning /* OS是否运行标记,0,不运行;1,在运行 */
#define delay_ostickspersec OS_TICKS_PER_SEC /* OS时钟节拍,即每秒调度次数 */
#define delay_osintnesting OSIntNesting /* 中断嵌套级别,即中断嵌套次数 */
#endif
/* 支持UCOSIII */
#ifdef CPU_CFG_CRITICAL_METHOD /* CPU_CFG_CRITICAL_METHOD定义了,说明要支持UCOSIII */
#define delay_osrunning OSRunning /* OS是否运行标记,0,不运行;1,在运行 */
#define delay_ostickspersec OSCfg_TickRate_Hz /* OS时钟节拍,即每秒调度次数 */
#define delay_osintnesting OSIntNestingCtr /* 中断嵌套级别,即中断嵌套次数 */
#endif
/**
* @brief us级延时时,关闭任务调度(防止打断us级延迟)
* @param 无
* @retval 无
*/
void delay_osschedlock(void)
{
#ifdef CPU_CFG_CRITICAL_METHOD /* 使用UCOSIII */
OS_ERR err;
OSSchedLock(&err); /* UCOSIII的方式,禁止调度,防止打断us延时 */
#else /* 否则UCOSII */
OSSchedLock(); /* UCOSII的方式,禁止调度,防止打断us延时 */
#endif
}
/**
* @brief us级延时时,恢复任务调度
* @param 无
* @retval 无
*/
void delay_osschedunlock(void)
{
#ifdef CPU_CFG_CRITICAL_METHOD /* 使用UCOSIII */
OS_ERR err;
OSSchedUnlock(&err); /* UCOSIII的方式,恢复调度 */
#else /* 否则UCOSII */
OSSchedUnlock(); /* UCOSII的方式,恢复调度 */
#endif
}
/**
* @brief us级延时时,恢复任务调度
* @param ticks: 延时的节拍数
* @retval 无
*/
void delay_ostimedly(uint32_t ticks)
{
#ifdef CPU_CFG_CRITICAL_METHOD
OS_ERR err;
OSTimeDly(ticks, OS_OPT_TIME_PERIODIC, &err); /* UCOSIII延时采用周期模式 */
#else
OSTimeDly(ticks); /* UCOSII延时 */
#endif
}
/**
* @brief systick中断服务函数,使用OS时用到
* @param ticks: 延时的节拍数
* @retval 无
*/
void SysTick_Handler(void)
{
HAL_IncTick();
if (delay_osrunning == 1) /* OS开始跑了,才执行正常的调度处理 */
{
OSIntEnter(); /* 进入中断 */
OSTimeTick(); /* 调用ucos的时钟服务程序 */
OSIntExit(); /* 触发任务切换软中断 */
}
}
#endif
以上代码,仅支持UCOSII和UCOSIII,不过,对于其他OS的支持,也只需要对以上代码进行简单修改即可实现。 支持OS需要用到的三个宏定义(以UCOSII为例)即:
#define delay_osrunning OSRunning /* OS是否运行标记,0,不运行;1,在运行 */
#define delay_ostickspersec OS_TICKS_PER_SEC /* OS时钟节拍,即每秒调度次数 */
#define delay_osintnesting OSIntNesting /* 中断嵌套级别,即中断嵌套次数 */
宏定义:delay_osrunning,用于标记OS是否正在运行,当OS已经开始运行时,该宏定义值为1,当OS还未运行时,该宏定义值为0。 宏定义:delay_ ostickspersec,用于表示OS的时钟节拍,即OS每秒钟任务调度次数。 宏定义:delay_ osintnesting,用于表示OS中断嵌套级别,即中断嵌套次数,每进入一个中断,该值加1,每退出一个中断,该值减1。 支持OS需要用到的4个函数,即: 函数:delay_osschedlock,用于delay_us延时,作用是禁止OS进行调度,以防打断us级延时,导致延时时间不准。 函数:delay_osschedunlock,同样用于delay_us延时,作用是在延时结束后恢复OS的调度,继续正常的OS任务调度。 函数:delay_ostimedly,则是调用OS自带的延时函数,实现延时。该函数的参数为时钟节拍数。 函数:SysTick_Handler,则是systick的中断服务函数,该函数为OS提供时钟节拍,同时可以引起任务调度。 以上就是delay_ms和delay_us支持操作系统时,需要实现的3个宏定义和4个函数。
12.1.2 delay_init函数该函数用来初始化2个重要参数:fac_us以及fac_ms;同时把SysTick的时钟源选择为外部时钟,如果需要支持操作系统(OS),只需要在sys.h里面,设置SYS_SUPPORT_OS宏的值为1即可,然后,该函数会根据delay_ostickspersec宏的设置,来配置SysTick的中断时间,并开启SysTick中断。具体代码如下:
/**
* @brief 初始化延迟函数
* @param sysclk: 系统时钟频率, 即CPU频率(rcc_c_ck), 480Mhz
* @retval 无
*/
void delay_init(uint16_t sysclk)
{
#if SYS_SUPPORT_OS /* 如果需要支持OS */
uint32_t reload;
#endif
/* SYSTICK使用内核时钟源,同CPU同频率 */
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
g_fac_us = sysclk; /* 不论是否使用OS,g_fac_us都需要使用 */
#if SYS_SUPPORT_OS /* 如果需要支持OS. */
reload = sysclk; /* 每秒钟的计数次数 单位为M */
/* 根据delay_ostickspersec设定溢出时间,reload为24位
寄存器,最大值:16777216,在480M下,约合0.035s左右 */
reload *= 1000000 / delay_ostickspersec;
g_fac_ms = 1000 / delay_ostickspersec; /* 代表OS可以延时的最少单位 */
SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; /* 开启SYSTICK中断 */
SysTick->LOAD = reload; /* 每1/delay_ostickspersec秒中断一次 */
SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk; /* 开启SYSTICK */
#endif
}
可以看到,delay_init函数使用了条件编译,来选择不同的初始化过程,如果不使用OS的时候,只是设置一下SysTick的时钟源以及确定fac_us值。而如果使用OS的时候,则会进行一些不同的配置,这里的条件编译是根据SYS_SUPPORT_OS这个宏来确定的,该宏在sys.h里面定义。 SysTick是MDK定义了的一个结构体(在core_m7.h里面),里面包含CTRL、LOAD、VAL、CALIB等4个寄存器。 SysTick->CTRL的各位定义如图12.1.2.1所示:
图12.1.2.1 SysTick->CTRL寄存器各位定义 SysTick-> LOAD的定义如图12.1.2.2所示:
图12.1.2.2 SysTick->LOAD寄存器各位定义 SysTick-> VAL的定义如图12.1.2.3所示:
图12.1.2.3 SysTick->VAL寄存器各位定义 SysTick-> CALIB不常用,在这里我们也用不到,故不介绍了。 HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);这句代码把SysTick的时钟选择为内核时钟,这里需要注意的是:SysTick的时钟源自HCLK,假设我们外部晶振为8M,然后倍频到480MHZ,那么SysTick的时钟即为480Mhz,也就是SysTick的计数器VAL每减1,就代表时间过了1/480us。 在不使用OS的时候:fac_us,为us延时的基数,也就是延时1us,Systick定时器需要走过的时钟周期数。 当使用OS的时候,fac_us,还是us延时的基数,不过这个值不会被写到SysTick->LOAD寄存器来实现延时,而是通过时钟摘取的办法实现的(前面已经介绍了)。而fac_ms则代表ucos自带的延时函数所能实现的最小延时时间(如delay_ostickspersec=200,那么fac_ms就是5ms)。
12.1.3 delay_us函数该函数用来延时指定的us,其参数nus为要延时的微秒数。该函数有使用OS和不使用OS两个版本,这里我们首先介绍不使用OS的时候,实现函数如下:
/**
* @brief 延时nus
* @param nus: 要延时的us数.
* @note 注意: nus的值,不要大于34952us(最大值即2^24/g_fac_us @g_fac_us = 480)
* @retval 无
*/
void delay_us(uint32_t nus)
{
uint32_t ticks;
uint32_t told, tnow, tcnt = 0;
uint32_t reload = SysTick->LOAD; /* LOAD的值 */
ticks = nus * g_fac_us; /* 需要的节拍数 */
told = SysTick->VAL; /* 刚进入时的计数器值 */
while (1)
{
tnow = SysTick->VAL;
if (tnow != told)
{
if (tnow = ticks)
{
break; /* 时间超过/等于要延迟的时间,则退出 */
}
}
}
}
这里就是利用了我们前面提到的时钟摘取法,ticks是延时nus需要等待的SysTick计数次数(也就是延时时间),told用于记录最近一次的SysTick->VAL值,然后tnow则是当前的SysTick->VAL值,通过他们的对比累加,实现SysTick计数次数的统计,统计值存放在tcnt里面,然后通过对比tcnt和ticks,来判断延时是否到达,从而达到不修改SysTick实现nus的延时。对于使用OS的时候,delay_us的实现函数和不使用OS的时候方法类似,都是使用的时钟摘取法,只不过使用delay_osschedlock和delay_osschedunlock两个函数,用于调度上锁和解锁,这是为了防止OS在delay_us的时候打断延时,可能导致的延时不准,所以我们利用这两个函数来实现免打断,从而保证延时精度。 再来看看使用OS的时候,delay_us的实现函数如下:
/**
* @brief 延时nus
* @param nus: 要延时的us数
* @note nus取值范围: 0~8947848(最大值即2^32 / g_fac_us @g_fac_us = 480)
* @retval 无
*/
void delay_us(uint32_t nus)
{
uint32_t ticks;
uint32_t told, tnow, tcnt = 0;
uint32_t reload = SysTick->LOAD; /* LOAD的值 */
ticks = nus * g_fac_us; /* 需要的节拍数 */
delay_osschedlock(); /* 阻止OS调度,防止打断us延时 */
told = SysTick->VAL; /* 刚进入时的计数器值 */
while (1)
{
tnow = SysTick->VAL;
if (tnow != told)
{
if (tnow = ticks)
{
break; /* 时间超过/等于要延迟的时间,则退出 */
}
}
}
delay_osschedunlock(); /* 恢复OS调度 */
}
这里就正是利用了我们前面提到的时钟摘取法,ticks是延时nus需要等待的SysTick计数次数(也就是延时时间),told用于记录最近一次的SysTick->VAL值,然后tnow则是当前的SysTick->VAL值,通过他们的对比累加,实现SysTick计数次数的统计,统计值存放在tcnt里面,然后通过对比tcnt和ticks,来判断延时是否到达,从而达到不修改SysTick实现nus的延时,从而可以和OS共用一个SysTick。 上面的delay_osschedlock和delay_osschedunlock是OS提供的两个函数,用于调度上锁和解锁,这里为了防止OS在delay_us的时候打断延时,可能导致的延时不准,所以我们利用这两个函数来实现免打断,从而保证延时精度!同时,此时的delay_us,,可以实现最长2^32/fac_us,在480M主频下,最大延时,大概是8.9秒。 12.1.4 delay_ms函数 该函数是用来延时指定的ms的,其参数nms为要延时的毫秒数。该函数有使用OS和不使用OS两个版本,这里我们分别介绍,首先是不使用OS的时候,实现函数如下:
/**
* @brief 延时nms
* @param nms: 要延时的ms数 (0< nms
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?