1)实验平台:正点原子MiniPro H750开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id=677017430560 3)全套实验源码+手册+视频下载地址:http://www.openedv.com/thread-336836-1-1.html 4)对正点原子STM32感兴趣的同学可以加群讨论:879133275
第二十三章 OLED显示实验本章我们来学习使用OLED液晶显示屏,在开发板上我们预留了OLED模块接口,需要准备一个OLED显示模块。下面我们一起来点亮OLED,并实现ASCII字符的显示。 本章分为如下几个小节: 23.1 OLED简介 23.2 硬件设计 23.3 程序设计 23.4 下载验证
23.1 OLED简介OLED,即有机发光二极管(Organic Light-Emitting Diode),又称为有机电激光显示(Organic Electroluminesence Display,OELD)。OLED由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。 LCD都需要背光,而OLED不需要,因为它是自发光的。这样同样的显示,OLED效果要来得好一些。以目前的技术,OLED的尺寸还难以大型化,但是分辨率确可以做到很高。在本章中,我们使用的是ALINETEK的OLED显示模块,该模块有以下特点: 1)模块有单色和双色两种可选,单色为纯蓝色,而双色则为黄蓝双色。 2)尺寸小,显示尺寸为0.96寸,而模块的尺寸仅为27mm26mm大小。 3)高分辨率,该模块的分辨率为12864。 4)多种接口方式,该模块提供了总共4种接口包括:6800、8080两种并行接口方式、4线SPI接口方式以及IIC接口方式(只需要2根线就可以控制OLED了!)。 5)不需要高压,直接接3.3V就可以工作了。 这里要提醒大家的是,该模块不和5.0V接口兼容,所以请大家在使用的时候一定要小心,别直接接到5V的系统上去,否则可能烧坏模块。以下4种模式通过模块的BS1和BS2设置,BS1和BS2的设置与模块接口模式的关系如表23.1.1所示:
表23.1.1 OLED模块接口方式设置表
表23.1.1中:“1”代表接VCC,而“0”代表接GND。 该模块的外观图如图23.1.1所示:
图23.1.1 ALIENTEK OLED模块外观图 ALIENTEK OLED模块默认设置是:BS1和BS2接VCC ,即使用8080并口方式,如果你想要设置为其他模式,则需要在OLED的背面,用烙铁修改BS1和BS2的设置。 模块的原理图如图23.1.2所示:
图23.1.2 ALIENTEK OLED模块原理图 该模块采用8*2的2.54排针与外部连接,总共有16个管脚,在16条线中,我们只用了15条,有一个是悬空的。15条线中,电源和地线占了2条,还剩下13条信号线。在不同模式下,我们需要的信号线数量是不同的,在8080模式下,需要全部13条,而在IIC模式下,仅需要2条线就够了!这其中有一条是共同的,那就是复位线RST(RES),RST上的低电平,将导致OLED复位,在每次初始化之前,都应该复位一下OLED模块。 ALIENTEK OLED模块的控制器是SSD1306,本章,我们将学习如何通过STM32H750来控制该模块显示字符和数字,本章的实例代码将可以支持两种方式与OLED模块连接,一种是8080的并口方式,另外一种是4线SPI方式。实际使用过程我们也通常只选用其中的一种来实现硬件上的连接,我们会分别介绍这两种模式,读者可以选择性阅读。
23.1.1 硬件驱动接口模式- 8080并口模式 首先我们介绍一下模块的8080并行接口,8080并行接口的发明者是INTEL,该总线也被广泛应用于各类液晶显示器,ALIENTEK OLED模块也提供了这种接口,使得MCU可以快速的访问OLED。ALIENTEK OLED模块的8080接口方式需要如下一些信号线: CS:OLED片选信号。 WR:向OLED写入数据。 RD:从OLED读取数据。 D[7:0]:8位双向数据线。 RST(RES):硬复位OLED。 DC:命令/数据标志(0,读写命令;1,读写数据)。 模块的8080并口写的过程为:先根据要写入的数据的类型,设置DC为高(数据)/低(命令),设置WR起始电平为高,然后拉低片选,选中SSD1306,接着我们在整个读时序上保持RD为高电平,然后: 拉低WR的电平准备写入数据,向数据线(D[7:0])上输入要写的信息; 拉高WR,这样得到一个WR的上升沿,在这个上升沿,使数据写入到SSD1306里面; SSD1306的8080并口写时序图如图23.1.1.1所示:
图23.1.1.1 8080并口写时序图 模块的8080并口读的过程为:先根据要写入的数据的类型,设置DC为高(数据)/低(命令),设置RD起始电平为高,然后拉低片选CS信号,选中SSD1306,接着我们在整个读时序上保持WR为高电平,然后类似写时序,同样的: 在RD的上升沿, 使数据锁存到数据线(D[7:0])上; SSD1306的8080并口读时序图如图23.1.1.2所示:
图23.1.1.2 8080并口读时序图 SSD1306的8080接口方式下,控制脚的信号状态所对应的功能如表23.1.1.1:
表23.1.1.1 控制脚信号状态功能表
在8080方式下读数据操作的时候,我们有时候(例如读显存的时候)需要一个假读命(Dummy Read),以使得微控制器的操作频率和显存的操作频率相匹配。在读取真正的数据之前,由一个的假读的过程。这里的假读,其实就是第一个读到的字节丢弃不要,从第二个开始,才是我们真正要读的数据。 一个典型的读显存的时序图,如图23.1.1.3所示:
图23.1.1.3 读显存时序图 可以看到,在发送了列地址之后,开始读数据,第一个是Dummy Read,也就是假读,我们从第二个开始,才算是真正有效的数据。并行接口模式就介绍到这里。 2. SPI模式 我们的代码同时兼容SPI方式的驱动,如果你使用的是这种驱动方式,则应该把代码中的宏OLED_MODE设置为: #define OLED_MODE 0 /* 0: 4线串行模式 */ 我们接下来介绍一下4线串行(SPI)方式,4先串口模式使用的信号线有如下几条: CS:OLED片选信号。 RST(RES):硬复位OLED。 DC:命令/数据标志(0,读写命令;1,读写数据)。 SCLK:串行时钟线。在4线串行模式下,D0信号线作为串行时钟线SCLK。 SDIN:串行数据线。在4线串行模式下,D1信号线作为串行数据线SDIN。 模块的D2需要悬空,其他引脚可以接到GND。在4线串行模式下,只能往模块写数据而不能读数据。 在4线SPI模式下,每个数据长度均为8位,在SCLK的上升沿,数据从SDIN移入到SSD1306,并且是高位在前的。DC线还是用作命令/数据的标志线。在4线SPI模式下,写操作的时序如图23.1.1.4所示:
图23.1.1.4 4线SPI写操作时序图 4线串行模式就为大家介绍到这里。其他还有几种模式,在SSD1306的数据手册上都有详细的介绍,我们把资料放到“开发板资料A盘->7,硬件资料\3,液晶资料\OLED资料\SSD1306-Revision 1.1 (Charge Pump).pdf”,如果要使用这些方式,请大家参考该手册并自行实现相应的功能代码。
23.1.2 OLED显存接下来,我们介绍一下模块的显存,SSD1306的显存总共为128*64bit大小,SSD1306将这些显存分为了8页,不使用显存对应的行列的重映射,其对应关系如表23.1.2.1所示:
表23.1.2.1 SSD1306显存与屏幕对应关系表 可以看出,SSD1306的每页包含了128个字节,总共8页,这样刚好是128*64的点阵大小。当GRAM的写入模式为页模式时,需要设置低字节起始的列地址(0x000x0F)和高字节的起始列地址(0x100x1F),芯片手册中给出了写入GRAM与显示的对应关系,写入列地址在写完一字节后自动按列增长,如图23.1.2.2所示:
图23.1.2.2 SSD1306页2显存写入字节与屏幕坐标的关系 因为每次写入都是按字节写入的,这就存在一个问题,如果我们使用只写方式操作模块,那么,每次要写8个点,这样,我们在画点的时候,就必须把要设置的点所在的字节的每个位都搞清楚当前的状态(0/1?),否则写入的数据就会覆盖掉之前的状态,结果就是有些不需要显示的点,显示出来了,或者该显示的没有显示了。这个问题在能读的模式下,我们可以先读出来要写入的那个字节,得到当前状况,在修改了要改写的位之后再写进GRAM,这样就不会影响到之前的状况了。但是这样需要能读GRAM,对于4线SPI模式/IIC模式,模块是不支持读的,而且读改写的方式速度也比较慢。 所以我们采用的办法是在STM32H750的内部建立一个虚拟的OLED的GRAM(共128*8=1024个字节),在每次修改的时候,只是修改STM32H750上的GRAM(实际上就是SRAM),在修改完了之后,一次性把STM3F103上的GRAM写入到OLED的GRAM。当然这个方法也有坏处,一个是对于那些SRAM很小的单片机(比如51系列)不太友好,另一个是每次都写入全屏,屏幕刷新率会变低。 SSD1306的命令比较多,这里我们仅介绍几个比较常用的命令,这些命令如下表所示:
表23.1.2.3 SSD1306常用命令表 第0个命令为0X81,用于设置对比度的,这个命令包含了两个字节,第一个0X81为命令,随后发送的一个字节为要设置的对比度的值。这个值设置得越大屏幕就越亮。 第1个命令为0XAE/0XAF。0XAE为关闭显示命令;0XAF为开启显示命令。 第2个命令为0X8D,该指令也包含2个字节,第一个为命令字,第二个为设置值,第二个字节的BIT2表示电荷泵的开关状态,该位为1,则开启电荷泵,为0则关闭。在模块初始化的时候,这个必须要开启,否则是看不到屏幕显示的。 第3个命令为0XB0~B7,该命令用于设置页地址,其低三位的值对应着GRAM的页地址。 第4个指令为0X00~0X0F,该指令用于设置显示时的起始列地址低四位。 第6个指令为0X10~0X1F,该指令用于设置显示时的起始列地址高四位。 其他命令,我们就不在这里一一介绍了,大家可以参考SSD1306 datasheet的第28页。从这页开始,对SSD1306的指令有详细的介绍。 最后,我们再来介绍一下OLED模块的初始化过程,SSD1306的典型初始化框图如图23.1.2.4所示:
图23.1.2.4 SSD1306初始化框图 驱动IC的初始化代码,我们直接使用厂家推荐的设置就可以了,只要对细节部分进行一些修改,使其满足我们自己的要求即可,其他不需要变动。 OLED的介绍就到此为止,我们重点向大家介绍了ALIENTEK OLED模块的相关知识,接下来我们将使用这个模块来显示字符和数字。通过以上介绍,我们可以得出OLED显示需要的相关设置步骤如下: 1)设置STM32F103与OLED模块相连接的IO。 这一步,先将我们与OLED模块相连的IO口设置为输出,具体使用哪些IO口,这里需要根据连接电路以及OLED模块所设置的通讯模式来确定。这些将在硬件设计部分向大家介绍。 2)初始化OLED模块。 其实这里就是上面的初始化框图的内容,通过对OLED相关寄存器的初始化,来启动OLED的显示。为后续显示字符和数字做准备。 3)通过函数将字符和数字显示到OLED模块上。 这里就是通过我们设计的程序,将要显示的字符送到OLED模块就可以了,这些函数将在软件设计部分向大家介绍。 通过以上三步,我们就可以使用ALIENTEK OLED模块来显示字符和数字了,在后面我们还将会给大家介绍显示汉字的方法。这一部分就先介绍到这里。
23.2 硬件设计- 例程功能 使用8080并口模式驱动或者使用4线SPI串口模式,驱动OLED模块,不停的显示ASCII码和码值。LED0闪烁,提示程序运行。
- 硬件资源 1)RGB灯 RED : LED0 - PB4 2)ALIENTEK 0.96寸OLED模块,在硬件上,OLED与开发板的IO口对应关系如下: OLED_CS对应DCMI_VSYNC,即:PB7; OLED_RS对应DCMI_SCL,即:PB10; OLED_WR对应DCMI_HREF,即:PA4; OLED_RD对应DCMI_SDA,即:PB11; OLED_RST对应DCMI_RESET,即:PA7; OLED_D[7:0]对应DCMI_D[7:0],即:PB9/PB8/PD3/PC11/PC9/PC8/PC7/PC6;
- 原理图 OLED模块的原理图在前面已有详细说明了,这里我们介绍OLED模块与我们开发板的连接,开发板上有一个OLED/CAMERA的接口(P2接口)可以和ALIENTEK OLED模块直接对插(靠左插!),连接如图23.2.1所示:
图23.2.1 OLED模块与开发板连接示意图 这些线的连接,开发板的内部已经连接好了,我们只需要将OLED模块插上去就好了,注意,这里的OLED_D[7:0]因为不是接的连续的IO,所以得用拼凑的方式去组合一下,后续会介绍。 23.3 程序设计 OLED只是用到HAL库中GPIO外设的驱动代码,在前面跑马灯实验已经介绍了。 23.3.1 程序流程图
图23.3.1.1 OLED实验程序流程图 23.3.2 程序解析
- OLED驱动代码 这里我们只讲解核心代码,详细的源码请大家参考光盘本实验对应源码。OLED驱动源码包括三个文件:oled.c、oled.h和oledfont.h。oledfont.h头文件存放的是ASCII字符集,oled.h存放的是引脚接口宏定义和函数声明等,oled.c则是驱动代码。 首先看oledfont.h头文件的ASCII字符集内容:
/* 常用ASCII表
* 偏移量32
* ASCII字符集: !"#$%&'()*+,-./0123456789:;?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
^_`abcdefghijklmnopqrstuvwxyz{|}~
* PC2LCD2002取模方式设置:阴码+逐列式+顺向+C51格式
* 总共:3个字符集(12*12、16*16和24*24),用户可以自行新增其他分辨率的字符集。
* 每个字符所占用的字节数为:(size/8+((size%8)?1:0))*(size/2),
其中size:是字库生成时的点阵大小(12/16/24...)
*/
/* 12*12 ASCII字符集点阵 */
const unsigned char oled_asc2_1206[95][12]={ ...这里省略字符集库... };
/* 16*16 ASCII字符集点阵 */
const unsigned char oled_asc2_1608[95][16]={ ...这里省略字符集库... };
/* 24*24 ASICII字符集点阵 */
const unsigned char oled_asc2_2412[95][36]={ ...这里省略字符集库... };
该头文件中包含三个大小不同的ASCII字符集点阵,其中包括:1212 ASCII字符集点阵、1616 ASCII字符集点阵、2424 ASICII字符集点阵。每个字符集点阵都包含95个常用的ASCII字符集,从空格符开始,分别为: !"#$%&'()+,-0123456789:;?@ABCDEFGHIJKLMNOPQR STUVWXYZ[]^_`abcdefghijklmnopqrstuvwxyz{|}~。 上面的ASCII字符集,我们可以使用一个款很好的字符提取软件来制作获取。字符提取软件为:PCtoLCD2002完美版,该软件可以提供各种字符,包括汉字(字体和大小都可以自己设置)阵提取,且取模方式可以设置好几种,常用的取模方式,该软件都支持。该软件还支持图形模式,也就是用户可以自己定义图片的大小,然后画图,根据所画的图形再生成点阵数据,这功能在制作图标或图片的时候很有用。 该软件的界面如图23.3.2.1所示:
图23.3.2.1 PCtoLCD2002软件界面 然后我们选择设置,在设置里面设置取模方式如图23.3.2.2所示:
图23.3.2.2 设置取模方式 上图设置的取模方式,在右上角的取模说明里面有,即:从第一列开始向下每取8个点作为一个字节,如果最后不足8个点就补满8位。取模顺序是从高到低,即第一个点作为最高位。如*-------取为10000000。其实就是按如图23.3.2.3所示的这种方式:
图23.3.2.3 取模方式图解 从上到下,从左到右,高位在前。我们按这样的取模方式,然后把ASCII字符集按126大小、168和2412大小取模出来(对应汉字大小为1212、1616和2424,字符的只有汉字的一半大!),每个126的字符占用12个字节,每个168的字符占用16个字节,每个24*12的字符占用36个字节。 oled.c和oled.h文件的代码可以帮助显示我们制作好的字符集。我们还是先看oled.h文件的宏定义,首先是OLED模式设置宏定义:
/* OLED模式设置
* 0: 4线串行模式 (模块的BS1,BS2均接GND)
* 1: 并行8080模式 (模块的BS1,BS2均接VCC)
*/
#define OLED_MODE 1 /* 默认使用8080并口模式 */
通过宏定义OLED_MODE来决定使用4线串行模式(0)还是并行8080模式(1),默认使用8080并口模式。
关于OLED 80并口模式和SPI模式的引脚定义就不列出来了,请看源码。
还有两个关于向OLED写入选择命令或者数据的宏定义,后面讲的oled_wr_byte函数用到。
/* 命令/数据 定义 */
#define OLED_CMD 0 /* 写命令 */
#define OLED_DATA 1 /* 写数据 */
最后就是oled.c文件的驱动源码介绍。先是OLED(SSD1306)的初始化函数,其定义如下:
/**
* @brief 初始化OLED(SSD1306)
* @param 无
* @retval 无
*/
void oled_init(void)
{
GPIO_InitTypeDef gpio_init_struct;
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
#if OLED_MODE==1 /* 使用8080并口模式 */
/* PA4,6,7,8设置 */
gpio_init_struct.Pin=GPIO_PIN_4|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8;
gpio_init_struct.Mode=GPIO_MODE_OUTPUT_PP; /* 推挽输出 */
gpio_init_struct.Pull=GPIO_PULLUP; /* 上拉 */
gpio_init_struct.Speed=GPIO_SPEED_FREQ_VERY_HIGH; /* 高速 */
HAL_GPIO_Init(GPIOA,&gpio_init_struct);
gpio_init_struct.Pin=GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10
|GPIO_PIN_11; /* PB7,8,9,10,11设置 */
HAL_GPIO_Init(GPIOB,&gpio_init_struct);
gpio_init_struct.Pin=GPIO_PIN_4|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9|GPIO_PIN_11; /* PC4,6~9,PC11设置 */
HAL_GPIO_Init(GPIOC,&gpio_init_struct);
gpio_init_struct.Pin=GPIO_PIN_3; /* PD3 设置 */
HAL_GPIO_Init(GPIOD,&gpio_init_struct);
OLED_WR(1);
OLED_RD(1);
#else /* 使用4线SPI 串口模式 */
gpio_init_struct.Pin=OLED_SPI_RST_PIN;
gpio_init_struct.Mode=GPIO_MODE_OUTPUT_PP; /* 推挽输出 */
gpio_init_struct.Pull=GPIO_PULLUP; /* 上拉 */
gpio_init_struct.Speed=GPIO_SPEED_FREQ_VERY_HIGH; /* 高速 */
HAL_GPIO_Init(OLED_SPI_RST_PORT,&gpio_init_struct); /* RST引脚模式设置 */
gpio_init_struct.Pin=OLED_SPI_CS_PIN;
HAL_GPIO_Init(OLED_SPI_CS_PORT,&gpio_init_struct); /* CS引脚模式设置 */
gpio_init_struct.Pin=OLED_SPI_RS_PIN;
HAL_GPIO_Init(OLED_SPI_RS_PORT,&gpio_init_struct); /* RS引脚模式设置 */
gpio_init_struct.Pin=OLED_SPI_SCLK_PIN;
HAL_GPIO_Init(OLED_SPI_SCLK_PORT,&gpio_init_struct); /* SCLK引脚模式设置 */
gpio_init_struct.Pin=OLED_SPI_SDIN_PIN;
HAL_GPIO_Init(OLED_SPI_SDIN_PORT,&gpio_init_struct); /* SDIN引脚模式设置 */
OLED_SDIN(1);
OLED_SCLK(1);
#endif
OLED_CS(1);
OLED_RS(1);
OLED_RST(0);
delay_ms(100);
OLED_RST(1);
oled_wr_byte(0xAE, OLED_CMD); /* 关闭显示 */
oled_wr_byte(0xD5, OLED_CMD); /* 设置时钟分频因子,震荡频率 */
oled_wr_byte(80, OLED_CMD); /* [3:0],分频因子;[7:4],震荡频率 */
oled_wr_byte(0xA8, OLED_CMD); /* 设置驱动路数 */
oled_wr_byte(0X3F, OLED_CMD); /* 默认0X3F(1/64) */
oled_wr_byte(0xD3, OLED_CMD); /* 设置显示偏移 */
oled_wr_byte(0X00, OLED_CMD); /* 默认为0 */
oled_wr_byte(0x40, OLED_CMD); /* 设置显示开始行 [5:0],行数. */
oled_wr_byte(0x8D, OLED_CMD); /* 电荷泵设置 */
oled_wr_byte(0x14, OLED_CMD); /* bit2,开启/关闭 */
oled_wr_byte(0x20, OLED_CMD); /* 设置内存地址模式 */
/* [1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认10; */
oled_wr_byte(0x02, OLED_CMD);
oled_wr_byte(0xA1, OLED_CMD); /* 段重定义设置,bit0:0,0->0;1,0->127; */
/* 设置COM扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 */
oled_wr_byte(0xC8, OLED_CMD);
oled_wr_byte(0xDA, OLED_CMD); /* 设置COM硬件引脚配置 */
oled_wr_byte(0x12, OLED_CMD); /* [5:4]配置 */
oled_wr_byte(0x81, OLED_CMD); /* 对比度设置 */
oled_wr_byte(0xEF, OLED_CMD); /* 1~255;默认0X7F (亮度设置,越大越亮) */
oled_wr_byte(0xD9, OLED_CMD); /* 设置预充电周期 */
oled_wr_byte(0xf1, OLED_CMD); /* [3:0],PHASE 1;[7:4],PHASE 2; */
oled_wr_byte(0xDB, OLED_CMD); /* 设置VCOMH 电压倍率 */
/* [6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; */
oled_wr_byte(0x30, OLED_CMD);
oled_wr_byte(0xA4, OLED_CMD); /* 全局显示开启;bit0:1,开启;0,关闭;(白屏/黑屏) */
oled_wr_byte(0xA6, OLED_CMD); /* 设置显示方式;bit0:1,反相显示;0,正常显示 */
oled_wr_byte(0xAF, OLED_CMD); /* 开启显示 */
oled_clear();
}
该函数的结构比较简单,开始是对GPIO口的初始化,这里我们用了宏定义OLED_MODE来决定要设置的IO口,后面的就是一些初始化序列了,我们按照厂家提供的资料来做就可以。值得注意一点的是,因为OLED是无背光的,在初始化之后,我们把显存都清空了,所以我们在屏幕上是看不到任何内容的,就像没通电一样,不要以为这就是初始化失败,要写入数据模块才会显示的。 接着,要介绍的是oled_refresh_gram更新显存到OLED函数,该函数的作用是把我们在程序中定义的二维数组g_oled_gram的值一次性刷新到OLED的显存GRAM中。我们在oled.c文件开头定义了如下一个二维数组:
/*
* OLED的显存
* 每个字节表示8个像素, 128,表示有128列, 8表示有64行, 高位表示高行数.
* 比如:g_oled_gram[0][0],包含了第一列,第1~8行的数据. g_oled_gram[0][0].0,即表示坐标(0,0)
* 类似的: g_oled_gram[1][0].1,表示坐标(1,1), g_oled_gram[10][1].2,表示坐标(10,10),
*
* 存放格式如下(高位表示高行数).
* [0]0 1 2 3 ... 127
* [1]0 1 2 3 ... 127
* [2]0 1 2 3 ... 127
* [3]0 1 2 3 ... 127
* [4]0 1 2 3 ... 127
* [5]0 1 2 3 ... 127
* [6]0 1 2 3 ... 127
* [7]0 1 2 3 ... 127
*/
static uint8_t g_oled_gram[128][8];
该数组值与OLED显存GRAM值一一对应。在操作的时候我们只需要先修改该数组的值,然后再通过调用oled_refresh_gram函数把数组的值一次性刷新到OLED 的GRAM上即可。oled_refresh_gram函数定义如下:
/**
* @brief 更新显存到OLED
* @param 无
* @retval 无
*/
void oled_refresh_gram(void)
{
uint8_t i, n;
for (i = 0; i 7) & 0x01)
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?