使用BNN对mnist数据进行训练,训练结束后,提取模型参数,并模拟推断过程,这里W没有乘以缩放因子。从四个print语句可以看到,BWc1、BWc2、BWc3和BWc4是二值化后的权重矩阵,激活经过sign函数后,便和二值化的W进行卷积计算,然后加上浮点型的偏置bias,得到二值化卷积的输出。代码如下:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.autograd import Function
# ********************* 二值(+-1) ***********************
# A
class Binary_a(Function):
@staticmethod
def forward(self, input):
self.save_for_backward(input)
output = torch.sign(input)
return output
@staticmethod
def backward(self, grad_output):
input, = self.saved_tensors
#*******************ste*********************
grad_input = grad_output.clone()
#****************saturate_ste***************
grad_input[input.ge(1)] = 0
grad_input[input.le(-1)] = 0
return grad_input
# W
class Binary_w(Function):
@staticmethod
def forward(self, input):
output = torch.sign(input)
return output
@staticmethod
def backward(self, grad_output):
#*******************ste*********************
grad_input = grad_output.clone()
return grad_input
# ********************* 三值(+-1、0) ***********************
class Ternary(Function):
@staticmethod
def forward(self, input):
# **************** channel级 - E(|W|) ****************
E = torch.mean(torch.abs(input), (3, 2, 1), keepdim=True)
# **************** 阈值 ****************
threshold = E * 0.7
# ************** W —— +-1、0 **************
output = torch.sign(torch.add(torch.sign(torch.add(input, threshold)),torch.sign(torch.add(input, -threshold))))
return output, threshold
@staticmethod
def backward(self, grad_output, grad_threshold):
#*******************ste*********************
grad_input = grad_output.clone()
return grad_input
# ********************* A(特征)量化(二值) ***********************
class activation_bin(nn.Module):
def __init__(self, A):
super().__init__()
self.A = A
self.relu = nn.ReLU(inplace=True)
def binary(self, input):
output = Binary_a.apply(input)
return output
def forward(self, input):
if self.A == 2:
output = self.binary(input)
# ******************** A —— 1、0 *********************
#a = torch.clamp(a, min=0)
else:
output = self.relu(input)
return output
# ********************* W(模型参数)量化(三/二值) ***********************
def meancenter_clampConvParams(w):
mean = w.data.mean(1, keepdim=True)
w.data.sub(mean) # W中心化(C方向)
w.data.clamp(-1.0, 1.0) # W截断
return w
class weight_tnn_bin(nn.Module):
def __init__(self, W):
super().__init__()
self.W = W
def binary(self, input):
output = Binary_w.apply(input)
return output
def ternary(self, input):
output = Ternary.apply(input)
return output
def forward(self, input):
if self.W == 2 or self.W == 3:
# **************************************** W二值 *****************************************
if self.W == 2:
output = meancenter_clampConvParams(input) # W中心化+截断
# **************** channel级 - E(|W|) ****************
E = torch.mean(torch.abs(output), (3, 2, 1), keepdim=True)
# **************** α(缩放因子) ****************
alpha = E
# ************** W —— +-1 **************
output = self.binary(output)
# ************** W * α **************
#output = output * alpha # 若不需要α(缩放因子),注释掉即可
# **************************************** W三值 *****************************************
elif self.W == 3:
output_fp = input.clone()
# ************** W —— +-1、0 **************
output, threshold = self.ternary(input)
# **************** α(缩放因子) ****************
output_abs = torch.abs(output_fp)
mask_le = output_abs.le(threshold)
mask_gt = output_abs.gt(threshold)
output_abs[mask_le] = 0
output_abs_th = output_abs.clone()
output_abs_th_sum = torch.sum(output_abs_th, (3, 2, 1), keepdim=True)
mask_gt_sum = torch.sum(mask_gt, (3, 2, 1), keepdim=True).float()
alpha = output_abs_th_sum / mask_gt_sum # α(缩放因子)
# *************** W * α ****************
output = output * alpha # 若不需要α(缩放因子),注释掉即可
else:
output = input
return output
# ********************* 量化卷积(同时量化A/W,并做卷积) ***********************
class Conv2d_Q(nn.Conv2d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
A=2,
W=2
):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias
)
# 实例化调用A和W量化器
self.activation_quantizer = activation_bin(A=A)
self.weight_quantizer = weight_tnn_bin(W=W)
def forward(self, input):
# 量化A和W
bin_input = self.activation_quantizer(input)
tnn_bin_weight = self.weight_quantizer(self.weight)
#print(bin_input)
#print(tnn_bin_weight)
# 用量化后的A和W做卷积
output = F.conv2d(
input=bin_input,
weight=tnn_bin_weight,
bias=self.bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups)
return output
# *********************量化(三值、二值)卷积*********************
class Tnn_Bin_Conv2d(nn.Module):
# 参数:last_relu-尾层卷积输入激活
def __init__(self, input_channels, output_channels,
kernel_size=-1, stride=-1, padding=-1, groups=1, last_relu=0, A=2, W=2):
super(Tnn_Bin_Conv2d, self).__init__()
self.A = A
self.W = W
self.last_relu = last_relu
# ********************* 量化(三/二值)卷积 *********************
self.tnn_bin_conv = Conv2d_Q(input_channels, output_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, A=A, W=W)
self.bn = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.tnn_bin_conv(x)
x = self.bn(x)
if self.last_relu:
x = self.relu(x)
return x
class Net(nn.Module):
def __init__(self, cfg = None, A=2, W=2):
super(Net, self).__init__()
# 模型结构与搭建
if cfg is None:
cfg = [16,32,64,10]
self.tnn_bin = nn.Sequential(
nn.Conv2d(1, cfg[0], kernel_size=5, stride=1,padding=2),
nn.BatchNorm2d(cfg[0]),
nn.MaxPool2d(kernel_size=2, stride=2),
Tnn_Bin_Conv2d(cfg[0], cfg[1], kernel_size=5, stride=1,padding=2, A=A, W=W),
Tnn_Bin_Conv2d(cfg[1], cfg[1], kernel_size=5, stride=1,padding=2, A=A, W=W),
nn.MaxPool2d(kernel_size=2, stride=2),
Tnn_Bin_Conv2d(cfg[1], cfg[2], kernel_size=5, stride=1,padding=2, A=A, W=W),
Tnn_Bin_Conv2d(cfg[2], cfg[3], kernel_size=5, stride=1,padding=2, last_relu=1, A=A, W=W),
nn.AvgPool2d(kernel_size=7, stride=1, padding=0),
)
def forward(self, x):
x = self.tnn_bin(x)
x = x.view(x.size(0), -1)
return x
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
device = torch.device('cuda:0')
# 随机种子——训练结果可复现
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
# 训练lr调整
def adjust_learning_rate(optimizer, epoch):
update_list = [10,20,30,40,50]
if epoch in update_list:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.2
return
# 模型训练
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# 前向传播
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
loss = criterion(output, target)
# 反向传播
optimizer.zero_grad()
loss.backward() # 求梯度
optimizer.step() # 参数更新
# 显示训练集loss(/100个batch)
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR: {}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item(),
optimizer.param_groups[0]['lr']))
return
# 模型测试
def test():
global best_acc
model.eval()
test_loss = 0
average_test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
# 前向传播
output = model(data)
test_loss += criterion(output, target).data.item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
# 测试准确率
acc = 100. * float(correct) / len(test_loader.dataset)
print(acc)
if __name__=='__main__':
setup_seed(1)#随机种子——训练结果可复现
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=128,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=128,
shuffle=False)
print('******Initializing model******')
# ******************** 在model的量化卷积中同时量化A(特征)和W(模型参数) ************************
model = Net(A=2, W=2)
best_acc = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight.data)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
# cpu、gpu
model.to(device)
# 打印模型结构
print(model)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0)
# 训练模型
for epoch in range(1, 20):
adjust_learning_rate(optimizer, epoch)
train(epoch)
test()
param=model.state_dict()
WeightBin=weight_tnn_bin(2)
#print(WeightBin.forward(torch.from_numpy(BWc1)))
#浮点卷积层
Wc1=param['tnn_bin.0.weight']
bc1=param['tnn_bin.0.bias']
#BN层
bn1_mean=param['tnn_bin.1.running_mean']
bn1_var=param['tnn_bin.1.running_var']
bn1_gamma=param['tnn_bin.1.weight']
bn1_beta=param['tnn_bin.1.bias']
#二值卷积层1,2
BWc1=WeightBin.forward(param['tnn_bin.3.tnn_bin_conv.weight'])
Bbc1=param['tnn_bin.3.tnn_bin_conv.bias']
bn2_mean=param['tnn_bin.3.bn.running_mean']
bn2_var=param['tnn_bin.3.bn.running_var']
bn2_gamma=param['tnn_bin.3.bn.weight']
bn2_beta=param['tnn_bin.3.bn.bias']
BWc2=WeightBin.forward(param['tnn_bin.4.tnn_bin_conv.weight'])
Bbc2=param['tnn_bin.4.tnn_bin_conv.bias']
bn3_mean=param['tnn_bin.4.bn.running_mean']
bn3_var=param['tnn_bin.4.bn.running_var']
bn3_gamma=param['tnn_bin.4.bn.weight']
bn3_beta=param['tnn_bin.4.bn.bias']
#二值卷积层3,4
BWc3=WeightBin.forward(param['tnn_bin.6.tnn_bin_conv.weight'])
Bbc3=param['tnn_bin.6.tnn_bin_conv.bias']
bn4_mean=param['tnn_bin.6.bn.running_mean']
bn4_var=param['tnn_bin.6.bn.running_var']
bn4_gamma=param['tnn_bin.6.bn.weight']
bn4_beta=param['tnn_bin.6.bn.bias']
BWc4=WeightBin.forward(param['tnn_bin.7.tnn_bin_conv.weight'])
Bbc4=param['tnn_bin.7.tnn_bin_conv.bias']
bn5_mean=param['tnn_bin.7.bn.running_mean']
bn5_var=param['tnn_bin.7.bn.running_var']
bn5_gamma=param['tnn_bin.7.bn.weight']
bn5_beta=param['tnn_bin.7.bn.bias']
print("BWc1")
print(BWc1)
print("BWc2")
print(BWc2)
print("BWc3")
print(BWc3)
print("BWc4")
print(BWc4)
correct=0
for batch_idx, (data, target) in enumerate(train_loader):
data,target=data.to(device),target.to(device)
x=torch.nn.functional.conv2d(data, Wc1, bias=bc1, stride=1, padding=2)
x=torch.nn.functional.batch_norm(x, running_mean=bn1_mean,running_var=bn1_var,weight=bn1_gamma,bias=bn1_beta)
x=torch.nn.functional.max_pool2d(x,kernel_size=2,stride=2)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,BWc1,bias=Bbc1,stride=1,padding=2)
x=torch.nn.functional.batch_norm(x, running_mean=bn2_mean,running_var=bn2_var,weight=bn2_gamma,bias=bn2_beta)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,BWc2,bias=Bbc2,stride=1,padding=2)
x=torch.nn.functional.batch_norm(x, running_mean=bn3_mean,running_var=bn3_var,weight=bn3_gamma,bias=bn3_beta)
x=torch.nn.functional.max_pool2d(x,kernel_size=2,stride=2)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,BWc3,bias=Bbc3,stride=1,padding=2)
x=torch.nn.functional.batch_norm(x, running_mean=bn4_mean,running_var=bn4_var,weight=bn4_gamma,bias=bn4_beta)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,BWc4,bias=Bbc4,stride=1,padding=2)
x=torch.nn.functional.batch_norm(x, running_mean=bn5_mean,running_var=bn5_var,weight=bn5_gamma,bias=bn5_beta)
x=torch.nn.functional.avg_pool2d(x,kernel_size=7)
output=torch.argmax(x,axis=1)
for i in range(data.size(0)):
if target[i]==output[i]:
correct+=1
print("Test accuracy is {}".format(correct/60000))
运行结果 下面是考虑缩放因子的情况,这时,二值化后的权重还需要乘以
α
\alpha
α,这就使得卷积时激活是二值的,但权重是浮点的,为了避免浮点运算,可以先和二值化后的权重卷积,然后结果再乘以
α
\alpha
α,即
W
=
W
b
∗
α
W=W_b*\alpha
W=Wb∗α
y
=
X
∗
W
+
b
=
X
∗
(
α
W
b
)
+
b
=
α
(
X
∗
W
b
)
+
b
y=X*W+b=X*(\alpha W_b)+b=\alpha (X*W_b)+b
y=X∗W+b=X∗(αWb)+b=α(X∗Wb)+b 代码如下:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.autograd import Function
# ********************* 二值(+-1) ***********************
# A
class Binary_a(Function):
@staticmethod
def forward(self, input):
self.save_for_backward(input)
output = torch.sign(input)
return output
@staticmethod
def backward(self, grad_output):
input, = self.saved_tensors
#*******************ste*********************
grad_input = grad_output.clone()
#****************saturate_ste***************
grad_input[input.ge(1)] = 0
grad_input[input.le(-1)] = 0
return grad_input
# W
class Binary_w(Function):
@staticmethod
def forward(self, input):
output = torch.sign(input)
return output
@staticmethod
def backward(self, grad_output):
#*******************ste*********************
grad_input = grad_output.clone()
return grad_input
# ********************* 三值(+-1、0) ***********************
class Ternary(Function):
@staticmethod
def forward(self, input):
# **************** channel级 - E(|W|) ****************
E = torch.mean(torch.abs(input), (3, 2, 1), keepdim=True)
# **************** 阈值 ****************
threshold = E * 0.7
# ************** W —— +-1、0 **************
output = torch.sign(torch.add(torch.sign(torch.add(input, threshold)),torch.sign(torch.add(input, -threshold))))
return output, threshold
@staticmethod
def backward(self, grad_output, grad_threshold):
#*******************ste*********************
grad_input = grad_output.clone()
return grad_input
# ********************* A(特征)量化(二值) ***********************
class activation_bin(nn.Module):
def __init__(self, A):
super().__init__()
self.A = A
self.relu = nn.ReLU(inplace=True)
def binary(self, input):
output = Binary_a.apply(input)
return output
def forward(self, input):
if self.A == 2:
output = self.binary(input)
# ******************** A —— 1、0 *********************
#a = torch.clamp(a, min=0)
else:
output = self.relu(input)
return output
# ********************* W(模型参数)量化(三/二值) ***********************
def meancenter_clampConvParams(w):
mean = w.data.mean(1, keepdim=True)
w.data.sub(mean) # W中心化(C方向)
w.data.clamp(-1.0, 1.0) # W截断
return w
class weight_tnn_bin(nn.Module):
def __init__(self, W):
super().__init__()
self.W = W
def binary(self, input):
output = Binary_w.apply(input)
return output
def ternary(self, input):
output = Ternary.apply(input)
return output
def forward(self, input):
if self.W == 2 or self.W == 3:
# **************************************** W二值 *****************************************
if self.W == 2:
output = meancenter_clampConvParams(input) # W中心化+截断
# **************** channel级 - E(|W|) ****************
E = torch.mean(torch.abs(output), (3, 2, 1), keepdim=True)
# **************** α(缩放因子) ****************
alpha = E
# ************** W —— +-1 **************
output = self.binary(output)
# ************** W * α **************
output = output * alpha # 若不需要α(缩放因子),注释掉即可
# **************************************** W三值 *****************************************
elif self.W == 3:
output_fp = input.clone()
# ************** W —— +-1、0 **************
output, threshold = self.ternary(input)
# **************** α(缩放因子) ****************
output_abs = torch.abs(output_fp)
mask_le = output_abs.le(threshold)
mask_gt = output_abs.gt(threshold)
output_abs[mask_le] = 0
output_abs_th = output_abs.clone()
output_abs_th_sum = torch.sum(output_abs_th, (3, 2, 1), keepdim=True)
mask_gt_sum = torch.sum(mask_gt, (3, 2, 1), keepdim=True).float()
alpha = output_abs_th_sum / mask_gt_sum # α(缩放因子)
# *************** W * α ****************
output = output * alpha # 若不需要α(缩放因子),注释掉即可
else:
output = input
return output
# ********************* 量化卷积(同时量化A/W,并做卷积) ***********************
class Conv2d_Q(nn.Conv2d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
A=2,
W=2
):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias
)
# 实例化调用A和W量化器
self.activation_quantizer = activation_bin(A=A)
self.weight_quantizer = weight_tnn_bin(W=W)
def forward(self, input):
# 量化A和W
bin_input = self.activation_quantizer(input)
tnn_bin_weight = self.weight_quantizer(self.weight)
#print(bin_input)
#print(tnn_bin_weight)
# 用量化后的A和W做卷积
output = F.conv2d(
input=bin_input,
weight=tnn_bin_weight,
bias=self.bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups)
return output
# *********************量化(三值、二值)卷积*********************
class Tnn_Bin_Conv2d(nn.Module):
# 参数:last_relu-尾层卷积输入激活
def __init__(self, input_channels, output_channels,
kernel_size=-1, stride=-1, padding=-1, groups=1, last_relu=0, A=2, W=2):
super(Tnn_Bin_Conv2d, self).__init__()
self.A = A
self.W = W
self.last_relu = last_relu
# ********************* 量化(三/二值)卷积 *********************
self.tnn_bin_conv = Conv2d_Q(input_channels, output_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, A=A, W=W)
self.bn = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.tnn_bin_conv(x)
x = self.bn(x)
if self.last_relu:
x = self.relu(x)
return x
class Net(nn.Module):
def __init__(self, cfg = None, A=2, W=2):
super(Net, self).__init__()
# 模型结构与搭建
if cfg is None:
cfg = [16,32,64,10]
self.tnn_bin = nn.Sequential(
nn.Conv2d(1, cfg[0], kernel_size=5, stride=1,padding=2),
nn.BatchNorm2d(cfg[0]),
nn.MaxPool2d(kernel_size=2, stride=2),
Tnn_Bin_Conv2d(cfg[0], cfg[1], kernel_size=5, stride=1,padding=2, A=A, W=W),
Tnn_Bin_Conv2d(cfg[1], cfg[1], kernel_size=5, stride=1,padding=2, A=A, W=W),
nn.MaxPool2d(kernel_size=2, stride=2),
Tnn_Bin_Conv2d(cfg[1], cfg[2], kernel_size=5, stride=1,padding=2, A=A, W=W),
Tnn_Bin_Conv2d(cfg[2], cfg[3], kernel_size=5, stride=1,padding=2, last_relu=1, A=A, W=W),
nn.AvgPool2d(kernel_size=7, stride=1, padding=0),
)
def forward(self, x):
x = self.tnn_bin(x)
x = x.view(x.size(0), -1)
return x
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
device = torch.device('cuda:0')
# 随机种子——训练结果可复现
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
# 训练lr调整
def adjust_learning_rate(optimizer, epoch):
update_list = [10,20,30,40,50]
if epoch in update_list:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.2
return
# 模型训练
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# 前向传播
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
loss = criterion(output, target)
# 反向传播
optimizer.zero_grad()
loss.backward() # 求梯度
optimizer.step() # 参数更新
# 显示训练集loss(/100个batch)
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR: {}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item(),
optimizer.param_groups[0]['lr']))
return
# 模型测试
def test():
global best_acc
model.eval()
test_loss = 0
average_test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
# 前向传播
output = model(data)
test_loss += criterion(output, target).data.item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
# 测试准确率
acc = 100. * float(correct) / len(test_loader.dataset)
print(acc)
if __name__=='__main__':
setup_seed(1)#随机种子——训练结果可复现
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=128,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=128,
shuffle=False)
print('******Initializing model******')
# ******************** 在model的量化卷积中同时量化A(特征)和W(模型参数) ************************
model = Net(A=2, W=2)
best_acc = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight.data)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
# cpu、gpu
model.to(device)
# 打印模型结构
print(model)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0)
# 训练模型
for epoch in range(1, 20):
adjust_learning_rate(optimizer, epoch)
train(epoch)
test()
param=model.state_dict()
WeightBin=weight_tnn_bin(2)
#print(WeightBin.forward(torch.from_numpy(BWc1)))
#浮点卷积层
Wc1=param['tnn_bin.0.weight']
bc1=param['tnn_bin.0.bias']
#BN层
bn1_mean=param['tnn_bin.1.running_mean']
bn1_var=param['tnn_bin.1.running_var']
bn1_gamma=param['tnn_bin.1.weight']
bn1_beta=param['tnn_bin.1.bias']
#二值卷积层1,2
BWc1=WeightBin.forward(param['tnn_bin.3.tnn_bin_conv.weight'])
Bbc1=param['tnn_bin.3.tnn_bin_conv.bias']
bn2_mean=param['tnn_bin.3.bn.running_mean']
bn2_var=param['tnn_bin.3.bn.running_var']
bn2_gamma=param['tnn_bin.3.bn.weight']
bn2_beta=param['tnn_bin.3.bn.bias']
BWc2=WeightBin.forward(param['tnn_bin.4.tnn_bin_conv.weight'])
Bbc2=param['tnn_bin.4.tnn_bin_conv.bias']
bn3_mean=param['tnn_bin.4.bn.running_mean']
bn3_var=param['tnn_bin.4.bn.running_var']
bn3_gamma=param['tnn_bin.4.bn.weight']
bn3_beta=param['tnn_bin.4.bn.bias']
#二值卷积层3,4
BWc3=WeightBin.forward(param['tnn_bin.6.tnn_bin_conv.weight'])
Bbc3=param['tnn_bin.6.tnn_bin_conv.bias']
bn4_mean=param['tnn_bin.6.bn.running_mean']
bn4_var=param['tnn_bin.6.bn.running_var']
bn4_gamma=param['tnn_bin.6.bn.weight']
bn4_beta=param['tnn_bin.6.bn.bias']
BWc4=WeightBin.forward(param['tnn_bin.7.tnn_bin_conv.weight'])
Bbc4=param['tnn_bin.7.tnn_bin_conv.bias']
bn5_mean=param['tnn_bin.7.bn.running_mean']
bn5_var=param['tnn_bin.7.bn.running_var']
bn5_gamma=param['tnn_bin.7.bn.weight']
bn5_beta=param['tnn_bin.7.bn.bias']
print("BWc1")
print(BWc1)
print("BWc2")
print(BWc2)
print("BWc3")
print(BWc3)
print("BWc4")
print(BWc4)
alpha1=torch.mean(torch.abs(BWc1),dim=(1,2,3),keepdim=True)
alpha2=torch.mean(torch.abs(BWc2),dim=(1,2,3),keepdim=True)
alpha3=torch.mean(torch.abs(BWc3),dim=(1,2,3),keepdim=True)
alpha4=torch.mean(torch.abs(BWc4),dim=(1,2,3),keepdim=True)
correct=0
for batch_idx, (data, target) in enumerate(train_loader):
data,target=data.to(device),target.to(device)
x=torch.nn.functional.conv2d(data, Wc1, bias=bc1, stride=1, padding=2)
x=torch.nn.functional.batch_norm(x, running_mean=bn1_mean,running_var=bn1_var,weight=bn1_gamma,bias=bn1_beta)
x=torch.nn.functional.max_pool2d(x,kernel_size=2,stride=2)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,torch.sign(BWc1),stride=1,padding=2)
x=x*alpha1.view(1,-1,1,1)+Bbc1.view(1,-1,1,1)
x=torch.nn.functional.batch_norm(x, running_mean=bn2_mean,running_var=bn2_var,weight=bn2_gamma,bias=bn2_beta)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,torch.sign(BWc2),stride=1,padding=2)
x=x*alpha2.view(1,-1,1,1)+Bbc2.view(1,-1,1,1)
x=torch.nn.functional.batch_norm(x, running_mean=bn3_mean,running_var=bn3_var,weight=bn3_gamma,bias=bn3_beta)
x=torch.nn.functional.max_pool2d(x,kernel_size=2,stride=2)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,torch.sign(BWc3),stride=1,padding=2)
x=x*alpha3.view(1,-1,1,1)+Bbc3.view(1,-1,1,1)
x=torch.nn.functional.batch_norm(x, running_mean=bn4_mean,running_var=bn4_var,weight=bn4_gamma,bias=bn4_beta)
x=torch.sign(x)
x=torch.nn.functional.conv2d(x,torch.sign(BWc4),stride=1,padding=2)
x=x*alpha4.view(1,-1,1,1)+Bbc4.view(1,-1,1,1)
x=torch.nn.functional.batch_norm(x, running_mean=bn5_mean,running_var=bn5_var,weight=bn5_gamma,bias=bn5_beta)
x=torch.nn.functional.avg_pool2d(x,kernel_size=7)
output=torch.argmax(x,axis=1)
for i in range(data.size(0)):
if target[i]==output[i]:
correct+=1
print("Test accuracy is {}".format(correct/60000))
运算结果: