我们知道,P,Q两列数据的相对熵越小,那么P,Q分布越接近,用Q近似P损失的信息就少,英伟达的INT8量化就是基于这个原理,如图是英伟达int8量化的算法伪代码
下面是根据相对熵来选取最佳阈值的代码。
import numpy as np import copy def compute_kl_divergence(P,Q): length=len(P) sum=0.0 for i in range(length): if P[i]!=0: if Q[i]==0: sum+=1 else: sum+=P[i]*np.log(P[i]/Q[i]) return sum def threshold_distribution(distribution,target_bin): target_threshold = target_bin min_kl_divergence = 10000000000000 length = len(distribution) for threshold in range(target_bin,length): #t_distribution=np.empty((threshold,)) t_distribution=copy.deepcopy(distribution[0:threshold]) t_distribution[threshold - 1] += np.sum(distribution[threshold:]) #get P num_per_bin = threshold / target_bin quantize_distribution = np.zeros((target_bin,)) for i in range(target_bin): start = i * num_per_bin end = start + num_per_bin left_upper = int(np.ceil(start)) if left_upper > start: left_scale = left_upper - start quantize_distribution[i] += left_scale * distribution[left_upper - 1] right_lower = int(np.floor(end)) if right_lower < end: right_scale = end - right_lower quantize_distribution[i] += right_scale * distribution[right_lower] for j in range(left_upper,right_lower): quantize_distribution[i] += distribution[j] # get Q expand_distribution=np.zeros_like(t_distribution) for i in range(target_bin): start = i * num_per_bin end = start + num_per_bin count = 0 left_upper = int(np.ceil(start)) left_scale = 0 if left_upper > start: left_scale = left_upper - start if t_distribution[left_upper - 1] != 0: count += left_scale right_lower = int(np.floor(end)) right_scale = 0 if right_lower < end: right_scale = end - right_lower if t_distribution[right_lower] != 0: count += right_scale for j in range(left_upper,right_lower): if t_distribution[j] != 0: count+=1 expand_value = quantize_distribution[i] / count if left_upper > start: if t_distribution[left_upper - 1] != 0: expand_distribution[left_upper - 1] += expand_value * left_scale if right_lower < end: if t_distribution[right_lower] != 0: expand_distribution[right_lower] += expand_value * right_scale for j in range(left_upper,right_lower): if t_distribution[j] != 0: expand_distribution[j] += expand_value kl_divergence = compute_kl_divergence(t_distribution, expand_distribution) #print(threshold,kl_divergence) if kl_divergence < min_kl_divergence: min_kl_divergence = kl_divergence target_threshold = threshold return target_threshold if __name__=='__main__': distribution=np.empty((2048,)) for i in range(len(distribution)): distribution[i]=i distribution/=np.sum(distribution) target_threshold=threshold_distribution(distribution,128) print(target_threshold)