您当前的位置: 首页 >  pytorch

FPGA硅农

暂无认证

  • 2浏览

    0关注

    282博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

pytorch实现DenseNet

FPGA硅农 发布时间:2021-02-21 17:42:13 ,浏览量:2

DenseNet详解链接 代码: DenseNet.py

import torch
import torch.nn as nn
from collections import OrderedDict


class _DenseLayer(nn.Sequential):
    def __init__(self, in_channels, growth_rate, bn_size):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(in_channels))
        self.add_module('relu1', nn.ReLU(inplace=True))
        self.add_module('conv1', nn.Conv2d(in_channels, bn_size * growth_rate,
                                           kernel_size=1,
                                           stride=1, bias=False))
        self.add_module('norm2', nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module('relu2', nn.ReLU(inplace=True))
        self.add_module('conv2', nn.Conv2d(bn_size*growth_rate, growth_rate,
                                           kernel_size=3,
                                           stride=1, padding=1, bias=False))

    # 重载forward函数
    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        return torch.cat([x, new_features], 1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, in_channels, bn_size, growth_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            self.add_module('denselayer%d' % (i+1),
                            _DenseLayer(in_channels+growth_rate*i,
                                        growth_rate, bn_size))


class _Transition(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(in_channels))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(in_channels, out_channels,
                                          kernel_size=1,
                                          stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class DenseNet_BC(nn.Module):
    def __init__(self, growth_rate=12, block_config=(6,12,24,16),
                 bn_size=4, theta=0.5, num_classes=10):
        super(DenseNet_BC, self).__init__()

        # 初始的卷积为filter:2倍的growth_rate
        num_init_feature = 2 * growth_rate

        # 表示cifar-10
        if num_classes == 10:
            self.features = nn.Sequential(OrderedDict([
                ('conv0', nn.Conv2d(3, num_init_feature,
                                    kernel_size=3, stride=1,
                                    padding=1, bias=False)),
            ]))
        else:
            self.features = nn.Sequential(OrderedDict([
                ('conv0', nn.Conv2d(3, num_init_feature,
                                    kernel_size=7, stride=2,
                                    padding=3, bias=False)),
                ('norm0', nn.BatchNorm2d(num_init_feature)),
                ('relu0', nn.ReLU(inplace=True)),
                ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
            ]))



        num_feature = num_init_feature
        for i, num_layers in enumerate(block_config):
            self.features.add_module('denseblock%d' % (i+1),
                                     _DenseBlock(num_layers, num_feature,
                                                 bn_size, growth_rate))
            num_feature = num_feature + growth_rate * num_layers
            if i != len(block_config)-1:
                self.features.add_module('transition%d' % (i + 1),
                                         _Transition(num_feature,
                                                     int(num_feature * theta)))
                num_feature = int(num_feature * theta)

        self.features.add_module('norm5', nn.BatchNorm2d(num_feature))
        self.features.add_module('relu5', nn.ReLU(inplace=True))
        self.features.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))

        self.classifier = nn.Linear(num_feature, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = features.view(features.size(0), -1)
        out = self.classifier(out)
        return out


# DenseNet_BC for ImageNet
def DenseNet121():
    return DenseNet_BC(growth_rate=32, block_config=(6, 12, 24, 16), num_classes=1000)

def DenseNet169():
    return DenseNet_BC(growth_rate=32, block_config=(6, 12, 32, 32), num_classes=1000)

def DenseNet201():
    return DenseNet_BC(growth_rate=32, block_config=(6, 12, 48, 32), num_classes=1000)

def DenseNet161():
    return DenseNet_BC(growth_rate=48, block_config=(6, 12, 36, 24), num_classes=1000,)

# DenseNet_BC for cifar
def densenet_BC_100():
    return DenseNet_BC(growth_rate=12, block_config=(16, 16, 16))



main.py

import torch
from torch import nn, optim
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from DenseNet import densenet_BC_100
import cv2

#  用CIFAR-10 数据集进行实验

def main():
    batchsz = 64
    cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)
    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)
    device = torch.device('cuda')
    model = densenet_BC_100().to(device)
    criteon = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    for epoch in range(100):
        model.train()
        for batchidx, (x, label) in enumerate(cifar_train):
            x, label = x.to(device), label.to(device)
            logits = model(x)
            loss = criteon(logits, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print(epoch, 'loss:', loss.item())

        model.eval()
        with torch.no_grad():
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                x, label = x.to(device), label.to(device)
                logits = model(x)
                pred = logits.argmax(dim=1)
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
            acc = total_correct / total_num
            print(epoch, 'test acc:', acc)

if __name__ == '__main__':
    main()



关注
打赏
1658642721
查看更多评论
立即登录/注册

微信扫码登录

0.0384s