BNN的训练由pytorch完成,权重和激活均被量化为-1和1,padding时补-1,为了能在硬件上进行部署,推理时作了如下变换: -1由0代替,1由1代替,乘法由同或运算代替,为了使乘累加的和不变(之前-1x-1=1,1x1=1,1x-1=-1,但是现在1 xnor 1=1,0 xnor 0=1,1 xnor 0=0),需要对最后卷积的结果进行修改: c o n v _ o u t = 2 ∗ x n o r _ c o n v ( x , w ) − c h _ i n ∗ k ∗ k + b i a s conv\_out=2*xnor\_conv(x,w)-ch\_in*k*k+bias conv_out=2∗xnor_conv(x,w)−ch_in∗k∗k+bias 而BN层运算为: b n _ o u t = c o n v _ o u t − μ σ ∗ γ + β bn\_out=\frac{conv\_out-\mu}{\sigma}*\gamma+\beta bn_out=σconv_out−μ∗γ+β 为了加速推理速度,我们将BN层和卷积层最后对卷积结果的修改进行融合,则有: γ ′ = 2 γ / σ \gamma'=2\gamma/\sigma γ′=2γ/σ β ′ = b i a s − c h _ i n ∗ k ∗ k − μ σ ∗ γ + β \beta'=\frac{bias-ch\_in*k*k-\mu}{\sigma}*\gamma+\beta β′=σbias−ch_in∗k∗k−μ∗γ+β 融合之后卷积和BN层的计算可简化为: x n o r _ c o n v _ o u t = x n o r _ c o n v ( x , w ) xnor\_conv\_out=xnor\_conv(x,w) xnor_conv_out=xnor_conv(x,w) b n _ o u t = γ ′ ∗ x n o r _ c o n v _ o u t + β ′ bn\_out=\gamma'*xnor\_conv\_out+\beta' bn_out=γ′∗xnor_conv_out+β′ 以下是pytorch上训练、存储权重并模拟推理的代码:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.autograd import Function
# ********************* 二值(+-1) ***********************
# A
class Binary_a(Function):
@staticmethod
def forward(self, input):
self.save_for_backward(input)
output = torch.sign(input)
return output
@staticmethod
def backward(self, grad_output):
input, = self.saved_tensors
# *******************ste*********************
grad_input = grad_output.clone()
# ****************saturate_ste***************
grad_input[input.ge(1)] = 0
grad_input[input.le(-1)] = 0
return grad_input
# W
class Binary_w(Function):
@staticmethod
def forward(self, input):
output = torch.sign(input)
return output
@staticmethod
def backward(self, grad_output):
# *******************ste*********************
grad_input = grad_output.clone()
return grad_input
# ********************* 三值(+-1、0) ***********************
class Ternary(Function):
@staticmethod
def forward(self, input):
# **************** channel级 - E(|W|) ****************
E = torch.mean(torch.abs(input), (3, 2, 1), keepdim=True)
# **************** 阈值 ****************
threshold = E * 0.7
# ************** W —— +-1、0 **************
output = torch.sign(
torch.add(torch.sign(torch.add(input, threshold)), torch.sign(torch.add(input, -threshold))))
return output, threshold
@staticmethod
def backward(self, grad_output, grad_threshold):
# *******************ste*********************
grad_input = grad_output.clone()
return grad_input
# ********************* A(特征)量化(二值) ***********************
class activation_bin(nn.Module):
def __init__(self, A):
super().__init__()
self.A = A
self.relu = nn.ReLU(inplace=True)
def binary(self, input):
output = Binary_a.apply(input)
return output
def forward(self, input):
if self.A == 2:
output = self.binary(input)
# ******************** A —— 1、0 *********************
# a = torch.clamp(a, min=0)
else:
output = self.relu(input)
return output
# ********************* W(模型参数)量化(三/二值) ***********************
def meancenter_clampConvParams(w):
mean = w.data.mean(1, keepdim=True)
w.data.sub(mean) # W中心化(C方向)
w.data.clamp(-1.0, 1.0) # W截断
return w
class weight_tnn_bin(nn.Module):
def __init__(self, W):
super().__init__()
self.W = W
def binary(self, input):
output = Binary_w.apply(input)
return output
def ternary(self, input):
output = Ternary.apply(input)
return output
def forward(self, input):
if self.W == 2 or self.W == 3:
# **************************************** W二值 *****************************************
if self.W == 2:
output = meancenter_clampConvParams(input) # W中心化+截断
# **************** channel级 - E(|W|) ****************
E = torch.mean(torch.abs(output), (3, 2, 1), keepdim=True)
# **************** α(缩放因子) ****************
alpha = E
# ************** W —— +-1 **************
output = self.binary(output)
# ************** W * α **************
# output = output * alpha # 若不需要α(缩放因子),注释掉即可
# **************************************** W三值 *****************************************
elif self.W == 3:
output_fp = input.clone()
# ************** W —— +-1、0 **************
output, threshold = self.ternary(input)
# **************** α(缩放因子) ****************
output_abs = torch.abs(output_fp)
mask_le = output_abs.le(threshold)
mask_gt = output_abs.gt(threshold)
output_abs[mask_le] = 0
output_abs_th = output_abs.clone()
output_abs_th_sum = torch.sum(output_abs_th, (3, 2, 1), keepdim=True)
mask_gt_sum = torch.sum(mask_gt, (3, 2, 1), keepdim=True).float()
alpha = output_abs_th_sum / mask_gt_sum # α(缩放因子)
# *************** W * α ****************
output = output * alpha # 若不需要α(缩放因子),注释掉即可
else:
output = input
return output
# ********************* 量化卷积(同时量化A/W,并做卷积) ***********************
class Conv2d_Q(nn.Conv2d):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
A=2,
W=2
):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias
)
# 实例化调用A和W量化器
self.activation_quantizer = activation_bin(A=A)
self.weight_quantizer = weight_tnn_bin(W=W)
def forward(self, input):
# 量化A和W
bin_input = self.activation_quantizer(input)
tnn_bin_weight = self.weight_quantizer(self.weight)
#用-1做padding
padding_tuple=(self.padding[0],self.padding[0],self.padding[0],self.padding[0])
bin_input_pad=F.pad(input=bin_input,pad=padding_tuple,mode='constant',value=-1)
# 用量化后的A和W做卷积
output = F.conv2d(
input=bin_input_pad,
weight=tnn_bin_weight,
bias=self.bias,
stride=self.stride,
padding=0,
dilation=self.dilation,
groups=self.groups)
return output
# *********************量化(三值、二值)卷积*********************
class Tnn_Bin_Conv2d(nn.Module):
# 参数:last_relu-尾层卷积输入激活
def __init__(self, input_channels, output_channels,
kernel_size=-1, stride=-1, padding=-1, groups=1, last_relu=0, A=2, W=2):
super(Tnn_Bin_Conv2d, self).__init__()
self.A = A
self.W = W
self.last_relu = last_relu
# ********************* 量化(三/二值)卷积 *********************
self.tnn_bin_conv = Conv2d_Q(input_channels, output_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, A=A, W=W)
self.bn = nn.BatchNorm2d(output_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.tnn_bin_conv(x)
x = self.bn(x)
if self.last_relu:
x = self.relu(x)
return x
class Net(nn.Module):
def __init__(self, cfg=None, A=2, W=2):
super(Net, self).__init__()
# 模型结构与搭建
if cfg is None:
cfg = [16, 32, 64, 10]
self.tnn_bin = nn.Sequential(
nn.Conv2d(1, cfg[0], kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(cfg[0]),
nn.MaxPool2d(kernel_size=2, stride=2),
Tnn_Bin_Conv2d(cfg[0], cfg[1], kernel_size=5, stride=1, padding=2, A=A, W=W),
Tnn_Bin_Conv2d(cfg[1], cfg[1], kernel_size=5, stride=1, padding=2, A=A, W=W),
nn.MaxPool2d(kernel_size=2, stride=2),
Tnn_Bin_Conv2d(cfg[1], cfg[2], kernel_size=5, stride=1, padding=2, A=A, W=W),
Tnn_Bin_Conv2d(cfg[2], cfg[3], kernel_size=5, stride=1, padding=2, last_relu=1, A=A, W=W),
nn.AvgPool2d(kernel_size=7, stride=1, padding=0),
)
def forward(self, x):
x = self.tnn_bin(x)
x = x.view(x.size(0), -1)
return x
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
device = torch.device('cuda:0')
# 随机种子——训练结果可复现
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
# 训练lr调整
def adjust_learning_rate(optimizer, epoch):
update_list = [10, 20, 30, 40, 50]
if epoch in update_list:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.2
return
# 模型训练
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# 前向传播
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
loss = criterion(output, target)
# 反向传播
optimizer.zero_grad()
loss.backward() # 求梯度
optimizer.step() # 参数更新
# 显示训练集loss(/100个batch)
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR: {}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item(),
optimizer.param_groups[0]['lr']))
return
# 模型测试
def test():
global best_acc
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
# 前向传播
output = model(data)
test_loss += criterion(output, target).data.item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
# 测试准确率
acc = 100. * float(correct) / len(test_loader.dataset)
print(acc)
def my_conv(x, w, kernel_size, stride, padding, padding_value):
batch_size, channel_in, height, width = x.size()
channel_out, channel_in, kx, ky = w.size()
x_pad = torch.nn.functional.pad(input=x, pad=(padding, padding, padding, padding), mode='constant',
value=padding_value)
h_out = int((height + 2 * padding - kernel_size) / stride + 1)
w_out = int((width + 2 * padding - kernel_size) / stride + 1)
out = torch.zeros((int(batch_size), int(channel_out), int(h_out), int(w_out)))
for b in range(batch_size):
for ch in range(channel_out):
for i in range(h_out):
for j in range(w_out):
out[b,ch,i,j]=torch.sum(torch.eq(x_pad[b,:,i*stride:i*stride+kernel_size,
j*stride:j*stride+kernel_size],w[ch,:,:,:]))
return out
def param_gen(gamma,beta,mean,var,bias,channel,kernel_size):
gamma_1=2*gamma/torch.sqrt(var)
beta_1=(bias-mean-channel*kernel_size*kernel_size)/torch.sqrt(var)*gamma+beta
return gamma_1,beta_1
if __name__ == '__main__':
setup_seed(1) # 随机种子——训练结果可复现
train_dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=128,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=128,
shuffle=False)
print('******Initializing model******')
# ******************** 在model的量化卷积中同时量化A(特征)和W(模型参数) ************************
model = Net(A=2, W=2)
best_acc = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight.data)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
# cpu、gpu
model.to(device)
print(model)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0)
# 训练模型
for epoch in range(1, 20):
adjust_learning_rate(optimizer, epoch)
train(epoch)
test()
param = model.state_dict()
WeightBin = weight_tnn_bin(2)
# 浮点卷积层
Wc1 = param['tnn_bin.0.weight'].cpu()
bc1 = param['tnn_bin.0.bias'].cpu()
# BN层
bn1_mean = param['tnn_bin.1.running_mean'].cpu()
bn1_var = param['tnn_bin.1.running_var'].cpu()
bn1_gamma = param['tnn_bin.1.weight'].cpu()
bn1_beta = param['tnn_bin.1.bias'].cpu()
# 二值卷积层1,2
BWc1 = WeightBin.forward(param['tnn_bin.3.tnn_bin_conv.weight']).cpu()
BWc1 = (BWc1+1)/2
Bbc1 = param['tnn_bin.3.tnn_bin_conv.bias'].cpu()
bn2_mean = param['tnn_bin.3.bn.running_mean'].cpu()
bn2_var = param['tnn_bin.3.bn.running_var'].cpu()
bn2_gamma = param['tnn_bin.3.bn.weight'].cpu()
bn2_beta = param['tnn_bin.3.bn.bias'].cpu()
gamma2,beta2=param_gen(gamma=bn2_gamma,beta=bn2_beta,mean=bn2_mean,var=bn2_var,bias=Bbc1,channel=16,kernel_size=5)
BWc2 = WeightBin.forward(param['tnn_bin.4.tnn_bin_conv.weight']).cpu()
BWc2 = (BWc2+1)/2
Bbc2 = param['tnn_bin.4.tnn_bin_conv.bias'].cpu()
bn3_mean = param['tnn_bin.4.bn.running_mean'].cpu()
bn3_var = param['tnn_bin.4.bn.running_var'].cpu()
bn3_gamma = param['tnn_bin.4.bn.weight'].cpu()
bn3_beta = param['tnn_bin.4.bn.bias'].cpu()
gamma3, beta3 = param_gen(gamma=bn3_gamma, beta=bn3_beta, mean=bn3_mean, var=bn3_var, bias=Bbc2, channel=32,
kernel_size=5)
# 二值卷积层3,4
BWc3 = WeightBin.forward(param['tnn_bin.6.tnn_bin_conv.weight']).cpu()
BWc3 = (BWc3+1)/2
Bbc3 = param['tnn_bin.6.tnn_bin_conv.bias'].cpu()
bn4_mean = param['tnn_bin.6.bn.running_mean'].cpu()
bn4_var = param['tnn_bin.6.bn.running_var'].cpu()
bn4_gamma = param['tnn_bin.6.bn.weight'].cpu()
bn4_beta = param['tnn_bin.6.bn.bias'].cpu()
gamma4, beta4 = param_gen(gamma=bn4_gamma, beta=bn4_beta, mean=bn4_mean, var=bn4_var, bias=Bbc3, channel=32,
kernel_size=5)
BWc4 = WeightBin.forward(param['tnn_bin.7.tnn_bin_conv.weight']).cpu()
BWc4 = (BWc4+1)/2
Bbc4 = param['tnn_bin.7.tnn_bin_conv.bias'].cpu()
bn5_mean = param['tnn_bin.7.bn.running_mean'].cpu()
bn5_var = param['tnn_bin.7.bn.running_var'].cpu()
bn5_gamma = param['tnn_bin.7.bn.weight'].cpu()
bn5_beta = param['tnn_bin.7.bn.bias'].cpu()
gamma5, beta5 = param_gen(gamma=bn5_gamma, beta=bn5_beta, mean=bn5_mean, var=bn5_var, bias=Bbc4, channel=64,
kernel_size=5)
Wc1.numpy().tofile("Wc1.bin")
bc1.numpy().tofile("bc1.bin")
bn1_gamma.numpy().tofile("bn1_gamma.bin")
bn1_beta.numpy().tofile("bn1_beta.bin")
bn1_mean.numpy().tofile("bn1_mean.bin")
bn1_var.numpy().tofile("bn1_var.bin")
BWc1.numpy().tofile("BWc1.bin")
BWc2.numpy().tofile("BWc2.bin")
BWc3.numpy().tofile("BWc3.bin")
BWc4.numpy().tofile("BWc4.bin")
gamma2.numpy().tofile("gamma2.bin")
beta2.numpy().tofile("beta2.bin")
gamma3.numpy().tofile("gamma3.bin")
beta3.numpy().tofile("beta3.bin")
gamma4.numpy().tofile("gamma4.bin")
beta4.numpy().tofile("beta4.bin")
gamma5.numpy().tofile("gamma5.bin")
beta5.numpy().tofile("beta5.bin")
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
x = F.conv2d(data, Wc1, bias=bc1, stride=1, padding=2)
x = F.batch_norm(x, running_mean=bn1_mean, running_var=bn1_var, weight=bn1_gamma,bias=bn1_beta)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = (torch.sign(x)+1)/2
x = my_conv(x,BWc1,kernel_size=5,stride=1,padding=2,padding_value=0)
x=x*gamma2.view(1,-1,1,1)+beta2.view(1,-1,1,1)
x = (torch.sign(x)+1)/2
x = my_conv(x, BWc2, kernel_size=5, stride=1, padding=2, padding_value=0)
x = x * gamma3.view(1, -1, 1, 1) + beta3.view(1, -1, 1, 1)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = (torch.sign(x)+1)/2
x = my_conv(x, BWc3, kernel_size=5, stride=1, padding=2, padding_value=0)
x = x * gamma4.view(1, -1, 1, 1) + beta4.view(1, -1, 1, 1)
x = (torch.sign(x)+1)/2
x = my_conv(x, BWc4, kernel_size=5, stride=1, padding=2, padding_value=0)
x = x * gamma5.view(1, -1, 1, 1) + beta5.view(1, -1, 1, 1)
x=torch.relu(x)
x = F.avg_pool2d(x, kernel_size=7)
output = torch.argmax(x, axis=1)
for i in range(data.size(0)):
if target[i] == output[i]:
correct += 1
print(correct/data.size(0))
correct=0
另一个python程序读取权重进行推理:
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np
def my_conv(x, w, kernel_size, stride, padding, padding_value):
batch_size, channel_in, height, width = x.size()
channel_out, channel_in, kx, ky = w.size()
x_pad = torch.nn.functional.pad(input=x, pad=(padding, padding, padding, padding), mode='constant',
value=padding_value)
h_out = int((height + 2 * padding - kernel_size) / stride + 1)
w_out = int((width + 2 * padding - kernel_size) / stride + 1)
out = torch.zeros((int(batch_size), int(channel_out), int(h_out), int(w_out)))
for b in range(batch_size):
for ch in range(channel_out):
for i in range(h_out):
for j in range(w_out):
out[b,ch,i,j]=torch.sum(torch.eq(x_pad[b,:,i*stride:i*stride+kernel_size,
j*stride:j*stride+kernel_size],w[ch,:,:,:]))
return out
Wc1=torch.from_numpy(np.fromfile("Wc1.bin",dtype=np.float32)).view(16,1,5,5)
bc1=torch.from_numpy(np.fromfile("bc1.bin",dtype=np.float32))
bn1_gamma=torch.from_numpy(np.fromfile("bn1_gamma.bin",dtype=np.float32))
bn1_beta=torch.from_numpy(np.fromfile("bn1_beta.bin",dtype=np.float32))
bn1_mean=torch.from_numpy(np.fromfile("bn1_mean.bin",dtype=np.float32))
bn1_var=torch.from_numpy(np.fromfile("bn1_var.bin",dtype=np.float32))
BWc1=torch.from_numpy(np.fromfile("BWc1.bin",dtype=np.float32)).view(32,16,5,5)
BWc2=torch.from_numpy(np.fromfile("BWc2.bin",dtype=np.float32)).view(32,32,5,5)
BWc3=torch.from_numpy(np.fromfile("BWc3.bin",dtype=np.float32)).view(64,32,5,5)
BWc4=torch.from_numpy(np.fromfile("BWc4.bin",dtype=np.float32)).view(10,64,5,5)
gamma2=torch.from_numpy(np.fromfile("gamma2.bin",dtype=np.float32))
beta2=torch.from_numpy(np.fromfile("beta2.bin",dtype=np.float32))
gamma3=torch.from_numpy(np.fromfile("gamma3.bin",dtype=np.float32))
beta3=torch.from_numpy(np.fromfile("beta3.bin",dtype=np.float32))
gamma4=torch.from_numpy(np.fromfile("gamma4.bin",dtype=np.float32))
beta4=torch.from_numpy(np.fromfile("beta4.bin",dtype=np.float32))
gamma5=torch.from_numpy(np.fromfile("gamma5.bin",dtype=np.float32))
beta5=torch.from_numpy(np.fromfile("beta5.bin",dtype=np.float32))
test_dataset = torchvision.datasets.MNIST(root='../../data',
train=False,
transform=transforms.ToTensor())
# Data loader
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False)
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
x = F.conv2d(data, Wc1, bias=bc1, stride=1, padding=2)
x = F.batch_norm(x, running_mean=bn1_mean, running_var=bn1_var, weight=bn1_gamma,bias=bn1_beta)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = (torch.sign(x)+1)/2
x = my_conv(x,BWc1,kernel_size=5,stride=1,padding=2,padding_value=0)
x = x * gamma2.view(1,-1,1,1)+beta2.view(1,-1,1,1)
x = (torch.sign(x)+1)/2
x = my_conv(x, BWc2, kernel_size=5, stride=1, padding=2, padding_value=0)
x = x * gamma3.view(1, -1, 1, 1) + beta3.view(1, -1, 1, 1)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = (torch.sign(x)+1)/2
x = my_conv(x, BWc3, kernel_size=5, stride=1, padding=2, padding_value=0)
x = x * gamma4.view(1, -1, 1, 1) + beta4.view(1, -1, 1, 1)
x = (torch.sign(x)+1)/2
x = my_conv(x, BWc4, kernel_size=5, stride=1, padding=2, padding_value=0)
x = x * gamma5.view(1, -1, 1, 1) + beta5.view(1, -1, 1, 1)
x=torch.relu(x)
x = F.avg_pool2d(x, kernel_size=7)
output = torch.argmax(x, axis=1)
for i in range(data.size(0)):
if target[i] == output[i]:
correct += 1
print(correct/data.size(0))
correct=0
C++上的推理:
#include
#include
#include
#include
#include
#pragma GCC optimize(3,"Ofast","inline")
using namespace std;
float img[10000][28][28];
int label[10000];
inline int xnor(int a,int b){
return (a==b)?1:0;
}
void bconv(int ch_in,int ch_out,int pad,int stride,int k,int h,int w,int *in,int *weight,int *out){
int h_o,w_o;
int i,j,n,m;
int kx,ky;
h_o=(h-k+2*pad)/stride+1;
w_o=(w-k+2*pad)/stride+1;
for(i=0;i
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?