您当前的位置: 首页 >  dubbo

庄小焱

暂无认证

  • 2浏览

    0关注

    805博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

Dubbo——线程模型(Netty-Reactor)原理

庄小焱 发布时间:2021-03-29 10:17:44 ,浏览量:2

摘要

在进行网络 I/O 操作的时候,用什么样的方式读写数据将在很大程度上决定了 I/O 的性能。作为一款优秀的网络基础库,Netty 就采用了 NIO 的 I/O 模型,这也是其高性能的重要原因之一。

一、NettyI/O模型设计 1.1 传统阻塞 I/O 模型

在传统阻塞型 I/O 模型(即我们常说的 BIO)中,如下图所示,每个请求都需要独立的线程完成读数据、业务处理以及写回数据的完整操作。

一个线程在同一时刻只能与一个连接绑定,如下图所示,当请求的并发量较大时,就需要创建大量线程来处理连接,这就会导致系统浪费大量的资源进行线程切换,降低程序的性能。我们知道,网络数据的传输速度是远远慢于 CPU 的处理速度,连接建立后,并不总是有数据可读,连接也并不总是可写,那么线程就只能阻塞等待,CPU 的计算能力不能得到充分发挥,同时还会导致大量线程的切换,浪费资源。

1.2 I/O 多路复用模型

针对传统的阻塞 I/O 模型的缺点,I/O 复用的模型在性能方面有不小的提升。I/O 复用模型中的多个连接会共用一个 Selector 对象,由 Selector 感知连接的读写事件,而此时的线程数并不需要和连接数一致,只需要很少的线程定期从 Selector 上查询连接的读写状态即可,无须大量线程阻塞等待连接。当某个连接有新的数据可以处理时,操作系统会通知线程,线程从阻塞状态返回,开始进行读写操作以及后续的业务逻辑处理。I/O 复用的模型如下图所示:

Netty 就是采用了上述 I/O 复用的模型。由于多路复用器 Selector 的存在,可以同时并发处理成百上千个网络连接,大大增加了服务器的处理能力。另外,Selector 并不会阻塞线程,也就是说当一个连接不可读或不可写的时候,线程可以去处理其他可读或可写的连接,这就充分提升了 I/O 线程的运行效率,避免由于频繁 I/O 阻塞导致的线程切换。如下图所示:

从数据处理的角度来看,传统的阻塞 I/O 模型处理的是字节流或字符流,也就是以流式的方式顺序地从一个数据流中读取一个或多个字节,并且不能随意改变读取指针的位置。而在 NIO 中则抛弃了这种传统的 I/O 流概念,引入了 Channel 和 Buffer 的概念,可以从 Channel 中读取数据到 Buffer 中或将数据从 Buffer 中写入到 Channel。Buffer 不像传统 I/O 中的流那样必须顺序操作,在 NIO 中可以读写 Buffer 中任意位置的数据。

二、Netty线程模型设计

服务器程序在读取到二进制数据之后,首先需要通过编解码,得到程序逻辑可以理解的消息,然后将消息传入业务逻辑进行处理,并产生相应的结果,返回给客户端。编解码逻辑、消息派发逻辑、业务处理逻辑以及返回响应的逻辑,是放到一个线程里面串行执行,还是分配到不同的线程中执行,会对程序的性能产生很大的影响。所以,优秀的线程模型对一个高性能网络库来说是至关重要的。

Netty 采用了 Reactor 线程模型的设计。 Reactor 模式,也被称为 Dispatcher 模式,核心原理是 Selector 负责监听 I/O 事件,在监听到 I/O 事件之后,分发(Dispatch)给相关线程进行处理。

2.1 单 Reactor 单线程

单 Reactor 单线程的优点就是:线程模型简单,没有引入多线程,自然也就没有多线程并发和竞争的问题。

但其缺点也非常明显,那就是性能瓶颈问题,一个线程只能跑在一个 CPU 上,能处理的连接数是有限的,无法完全发挥多核 CPU 的优势。一旦某个业务逻辑耗时较长,这唯一的线程就会卡在上面,无法处理其他连接的请求,程序进入假死的状态,可用性也就降低了。正是由于这种限制,一般只会在客户端使用这种线程模型。

2.2 单 Reactor 多线程

在单 Reactor 多线程的架构中,Reactor 监控到客户端请求之后,如果连接建立的请求,则由Acceptor 通过 accept 处理,然后创建一个 Handler 对象处理连接建立之后的业务请求。如果不是连接建立请求,则 Reactor 会将事件分发给调用连接对应的 Handler 来处理。到此为止,该流程与单 Reactor 单线程的模型基本一致,唯一的区别就是执行 Handler 逻辑的线程隶属一个线程池。

单 Reactor 多线程模型

很明显,单 Reactor 多线程的模型可以充分利用多核 CPU 的处理能力,提高整个系统的吞吐量,但引入多线程模型就要考虑线程并发、数据共享、线程调度等问题。在这个模型中,只有一个线程来处理 Reactor 监听到的所有 I/O 事件,其中就包括连接建立事件以及读写事件,当连接数不断增大的时候,这个唯一的 Reactor 线程也会遇到瓶颈。

2.3 主从 Reactor 多线程

为了解决单 Reactor 多线程模型中的问题,我们可以引入多个 Reactor。其中,Reactor 主线程负责通过 Acceptor 对象处理 MainReactor 监听到的连接建立事件,当Acceptor 完成网络连接的建立之后,MainReactor 会将建立好的连接分配给 SubReactor 进行后续监听。

当一个连接被分配到一个 SubReactor 之上时,会由 SubReactor 负责监听该连接上的读写事件。当有新的读事件(OP_READ)发生时,Reactor 子线程就会调用对应的 Handler 读取数据,然后分发给 Worker 线程池中的线程进行处理并返回结果。待处理结束之后,Handler 会根据处理结果调用 send 将响应返回给客户端,当然此时连接要有可写事件(OP_WRITE)才能发送数据。

主从 Reactor 多线程模型

主从 Reactor 多线程的设计模式解决了单一 Reactor 的瓶颈。主从 Reactor 职责明确,主 Reactor 只负责监听连接建立事件,SubReactor只负责监听读写事件。整个主从 Reactor 多线程架构充分利用了多核 CPU 的优势,可以支持扩展,而且与具体的业务逻辑充分解耦,复用性高。但不足的地方是,在交互上略显复杂,需要一定的编程门槛。

三、Netty 线程模型

Netty 同时支持上述几种线程模式,Netty 针对服务器端的设计是在主从 Reactor 多线程模型的基础上进行的修改,如下图所示:

Netty 抽象出两组线程池:BossGroup 专门用于接收客户端的连接,WorkerGroup 专门用于网络的读写。BossGroup 和 WorkerGroup 类型都是 NioEventLoopGroup,相当于一个事件循环组,其中包含多个事件循环 ,每一个事件循环是 NioEventLoop。

NioEventLoop 表示一个不断循环的、执行处理任务的线程,每个 NioEventLoop 都有一个Selector 对象与之对应,用于监听绑定在其上的连接,这些连接上的事件由 Selector 对应的这条线程处理。每个 NioEventLoopGroup 可以含有多个 NioEventLoop,也就是多个线程。

每个 Boss NioEventLoop 会监听 Selector 上连接建立的 accept 事件,然后处理 accept 事件与客户端建立网络连接,生成相应的 NioSocketChannel 对象,一个 NioSocketChannel 就表示一条网络连接。之后会将 NioSocketChannel 注册到某个 Worker NioEventLoop 上的 Selector 中。

每个 Worker NioEventLoop 会监听对应 Selector 上的 read/write 事件,当监听到 read/write 事件的时候,会通过 Pipeline 进行处理。一个 Pipeline 与一个 Channel 绑定,在 Pipeline 上可以添加多个 ChannelHandler,每个 ChannelHandler 中都可以包含一定的逻辑,例如编解码等。Pipeline 在处理请求的时候,会按照我们指定的顺序调用 ChannelHandler。

四、Netty模型设计核心概念 4.1 Channel

Channel 是 Netty 对网络连接的抽象,核心功能是执行网络 I/O 操作。不同协议、不同阻塞类型的连接对应不同的 Channel 类型。我们一般用的都是 NIO 的 Channel,下面是一些常用的 NIO Channel 类型。

  • NioSocketChannel:对应异步的 TCP Socket 连接。
  • NioServerSocketChannel:对应异步的服务器端 TCP Socket 连接。
  • NioDatagramChannel:对应异步的 UDP 连接。

上述异步 Channel 主要提供了异步的网络 I/O 操作,例如:建立连接、读写操作等。异步调用意味着任何 I/O 调用都将立即返回,并且不保证在调用返回时所请求的 I/O 操作已完成。I/O 操作返回的是一个 ChannelFuture 对象,无论 I/O 操作是否成功,Channel 都可以通过监听器通知调用方,我们通过向 ChannelFuture 上注册监听器来监听 I/O 操作的结果。

Netty 也支持同步 I/O 操作,但在实践中几乎不使用。绝大多数情况下,我们使用的是 Netty 中异步 I/O 操作。虽然立即返回一个 ChannelFuture 对象,但不能立刻知晓 I/O 操作是否成功,这时我们就需要向 ChannelFuture 中注册一个监听器,当操作执行成功或失败时,监听器会自动触发注册的监听事件。

另外,Channel 还提供了检测当前网络连接状态等功能,这些可以帮助我们实现网络异常断开后自动重连的功能。

4.2 Selector

Selector 是对多路复用器的抽象,也是 Java NIO 的核心基础组件之一。Netty 就是基于 Selector 对象实现 I/O 多路复用的,在 Selector 内部,会通过系统调用不断地查询这些注册在其上的 Channel 是否有已就绪的 I/O 事件,例如,可读事件(OP_READ)、可写事件(OP_WRITE)或是网络连接事件(OP_ACCEPT)等,而无须使用用户线程进行轮询。这样,我们就可以用一个线程监听多个 Channel 上发生的事件。

4.3 ChannelPipeline&ChannelHandler

提到 Pipeline,你可能最先想到的是 Linux 命令中的管道,它可以实现将一条命令的输出作为另一条命令的输入。Netty 中的 ChannelPipeline 也可以实现类似的功能:ChannelPipeline 会将一个 ChannelHandler 处理后的数据作为下一个 ChannelHandler 的输入。

下图我们引用了 Netty Javadoc 中对 ChannelPipeline 的说明,描述了 ChannelPipeline 中 ChannelHandler 通常是如何处理 I/O 事件的。Netty 中定义了两种事件类型:入站(Inbound)事件和出站(Outbound)事件。这两种事件就像 Linux 管道中的数据一样,在 ChannelPipeline 中传递,事件之中也可能会附加数据。ChannelPipeline 之上可以注册多个 ChannelHandler(ChannelInboundHandler 或 ChannelOutboundHandler),我们在 ChannelHandler 注册的时候决定处理 I/O 事件的顺序,这就是典型的责任链模式。

从图中我们还可以看到,I/O 事件不会在 ChannelPipeline 中自动传播,而是需要调用ChannelHandlerContext 中定义的相应方法进行传播,例如:fireChannelRead() 方法和 write() 方法等。

这里我们举一个简单的例子,如下所示,在该 ChannelPipeline 上,我们添加了 5 个 ChannelHandler 对象:

ChannelPipeline p = socketChannel.pipeline(); 

p.addLast("1", new InboundHandlerA()); 

p.addLast("2", new InboundHandlerB());

p.addLast("3", new OutboundHandlerA());

p.addLast("4", new OutboundHandlerB());

p.addLast("5", new InboundOutboundHandlerX());
  • 对于入站(Inbound)事件,处理序列为:1 → 2 → 5;
  • 对于出站(Outbound)事件,处理序列为:5 → 4 → 3。

可见,入站(Inbound)与出站(Outbound)事件处理顺序正好相反。

入站(Inbound)事件一般由 I/O 线程触发。举个例子,我们自定义了一种消息协议,一条完整的消息是由消息头和消息体两部分组成,其中消息头会含有消息类型、控制位、数据长度等元数据,消息体则包含了真正传输的数据。在面对一块较大的数据时,客户端一般会将数据切分成多条消息发送,服务端接收到数据后,一般会先进行解码和缓存,待收集到长度足够的字节数据,组装成有固定含义的消息之后,才会传递给下一个 ChannelInboudHandler 进行后续处理。

一个 Channel 对应一个 ChannelPipeline,一个 ChannelHandlerContext 对应一个ChannelHandler。

4.4 NioEventLoop

在前文介绍 Netty 线程模型的时候,我们简单提到了 NioEventLoop 这个组件,当时为了便于理解,只是简单将其描述成了一个线程。

一个 EventLoop 对象由一个永远都不会改变的线程驱动,同时一个 NioEventLoop 包含了一个 Selector 对象,可以支持多个 Channel 注册在其上,该 NioEventLoop 可以同时服务多个 Channel,每个 Channel 只能与一个 NioEventLoop 绑定,这样就实现了线程与 Channel 之间的关联。

我们知道,Channel 中的 I/O 操作是由 ChannelPipeline 中注册的 ChannelHandler 进行处理的,而 ChannelHandler 的逻辑都是由相应 NioEventLoop 关联的那个线程执行的。

普通任务队列。用户产生的普通任务可以提交到该队列中暂存,NioEventLoop 发现该队列中的任务后会立即执行。这是一个多生产者、单消费者的队列,Netty 使用该队列将外部用户线程产生的任务收集到一起,并在 Reactor 线程内部用单线程的方式串行执行队列中的任务。例如,外部非 I/O 线程调用了 Channel 的 write() 方法,Netty 会将其封装成一个任务放入 TaskQueue 队列中,这样,所有的 I/O 操作都会在 I/O 线程中串行执行。

定时任务队列。当用户在非 I/O 线程产生定时操作时,Netty 将用户的定时操作封装成定时任务,并将其放入该定时任务队列中等待相应 NioEventLoop 串行执行。

到这里我们可以看出,NioEventLoop 主要做三件事:监听 I/O 事件、执行普通任务以及执行定时任务。NioEventLoop 到底分配多少时间在不同类型的任务上,是可以配置的。另外,为了防止 NioEventLoop 长时间阻塞在一个任务上,一般会将耗时的操作提交到其他业务线程池处理。

4.5 NioEventLoopGroup

NioEventLoopGroup 表示的是一组 NioEventLoop。Netty 为了能更充分地利用多核 CPU 资源,一般会有多个 NioEventLoop 同时工作,至于多少线程可由用户决定,Netty 会根据实际上的处理器核数计算一个默认值,具体计算公式是:CPU 的核心数 * 2,当然我们也可以根据实际情况手动调整。

当一个 Channel 创建之后,Netty 会调用 NioEventLoopGroup 提供的 next() 方法,按照一定规则获取其中一个 NioEventLoop 实例,并将 Channel 注册到该 NioEventLoop 实例,之后,就由该 NioEventLoop 来处理 Channel 上的事件。EventLoopGroup、EventLoop 以及 Channel 三者的关联关系,如下图所示:

前面我们提到过,在 Netty 服务器端中,会有 BossEventLoopGroup 和 WorkerEventLoopGroup 两个 NioEventLoopGroup。通常一个服务端口只需要一个ServerSocketChannel,对应一个 Selector 和一个 NioEventLoop 线程。

BossEventLoop 负责接收客户端的连接事件,即 OP_ACCEPT 事件,然后将创建的NioSocketChannel 交给 WorkerEventLoopGroup; WorkerEventLoopGroup 会由 next() 方法选择其中一个 NioEventLoopGroup,并将这个 NioSocketChannel 注册到其维护的 Selector 并对其后续的I/O事件进行处理。

如上图,BossEventLoopGroup 通常是一个单线程的 EventLoop,EventLoop 维护着一个Selector 对象,其上注册了一个 ServerSocketChannel,BoosEventLoop 会不断轮询 Selector 监听连接事件,在发生连接事件时,通过 accept 操作与客户端创建连接,创建 SocketChannel 对象。然后将 accept 操作得到的 SocketChannel 交给 WorkerEventLoopGroup,在Reactor 模式中 WorkerEventLoopGroup 中会维护多个 EventLoop,而每个 EventLoop 都会监听分配给它的 SocketChannel 上发生的 I/O 事件,并将这些具体的事件分发给业务线程池处理。

4.6 ByteBuf

通过前文的介绍,我们了解了 Netty 中数据的流向,这里我们再来介绍一下数据的容器——ByteBuf。

在进行跨进程远程交互的时候,我们需要以字节的形式发送和接收数据,发送端和接收端都需要一个高效的数据容器来缓存字节数据,ByteBuf 就扮演了这样一个数据容器的角色。

ByteBuf 类似于一个字节数组,其中维护了一个读索引和一个写索引,分别用来控制对 ByteBuf 中数据的读写操作,两者符合下面的不等式:

Netty 中主要分为以下三大类 ByteBuf:

  • Heap Buffer(堆缓冲区)。这是最常用的一种 ByteBuf,它将数据存储在 JVM 的堆空间,其底层实现是在 JVM 堆内分配一个数组,实现数据的存储。堆缓冲区可以快速分配,当不使用时也可以由 GC 轻松释放。它还提供了直接访问底层数组的方法,通过 ByteBuf.array() 来获取底层存储数据的 byte[] 。
  • Direct Buffer(直接缓冲区)。直接缓冲区会使用堆外内存存储数据,不会占用 JVM 堆的空间,使用时应该考虑应用程序要使用的最大内存容量以及如何及时释放。直接缓冲区在使用 Socket 传递数据时性能很好,当然,它也是有缺点的,因为没有了 JVM GC 的管理,在分配内存空间和释放内存时,比堆缓冲区更复杂,Netty 主要使用内存池来解决这样的问题,这也是 Netty 使用内存池的原因之一。
  • Composite Buffer(复合缓冲区)。我们可以创建多个不同的 ByteBuf,然后提供一个这些 ByteBuf 组合的视图,也就是 CompositeByteBuf。它就像一个列表,可以动态添加和删除其中的 ByteBuf。
五、内存管理

Netty 使用 ByteBuf 对象作为数据容器,进行 I/O 读写操作,其实 Netty 的内存管理也是围绕着ByteBuf 对象高效地分配和释放。从内存管理角度来看,ByteBuf 可分为 Unpooled 和 Pooled 两类。

  • Unpooled,是指非池化的内存管理方式。每次分配时直接调用系统 API 向操作系统申请 ByteBuf,在使用完成之后,通过系统调用进行释放。Unpooled 将内存管理完全交给系统,不做任何特殊处理,使用起来比较方便,对于申请和释放操作不频繁、操作成本比较低的 ByteBuf 来说,是比较好的选择。
  • Pooled,是指池化的内存管理方式。该方式会预先申请一块大内存形成内存池,在需要申请 ByteBuf 空间的时候,会将内存池中一部分合理的空间封装成 ByteBuf 给服务使用,使用完成后回收到内存池中。前面提到 DirectByteBuf 底层使用的堆外内存管理比较复杂,池化技术很好地解决了这一问题。

下面我们从如何高效分配和释放内存、如何减少内存碎片以及在多线程环境下如何减少锁竞争这三个方面介绍一下 Netty 提供的 ByteBuf 池化技术。

Netty 首先会向系统申请一整块连续内存,称为 Chunk(默认大小为 16 MB),这一块连续的内存通过 PoolChunk 对象进行封装。之后,Netty 将 Chunk 空间进一步拆分为 Page,每个 Chunk 默认包含 2048 个 Page,每个 Page 的大小为 8 KB。

在同一个 Chunk 中,Netty 将 Page 按照不同粒度进行分层管理。如下图所示,从下数第 1 层中每个分组的大小为 1 * PageSize,一共有 2048 个分组;第 2 层中每个分组大小为 2 * PageSize,一共有 1024 个组;第 3 层中每个分组大小为 4 * PageSize,一共有 512 个组;依次类推,直至最顶层。

5.1 内存分配&释放

当服务向内存池请求内存时,Netty 会将请求分配的内存数向上取整到最接近的分组大小,然后在该分组的相应层级中从左至右寻找空闲分组。例如,服务请求分配 3 * PageSize 的内存,向上取整得到的分组大小为 4 * PageSize,在该层分组中找到完全空闲的一组内存进行分配即可,下图:

当分组大小 4 * PageSize 的内存分配出去后,为了方便下次内存分配,分组被标记为全部已使用(图中红色标记),向上更粗粒度的内存分组被标记为部分已使用(图中黄色标记)。

Netty 使用完全平衡树的结构实现了上述算法,这个完全平衡树底层是基于一个 byte 数组构建的,如下图所示:

5.2 大对象&小对象的处理

当申请分配的对象是超过 Chunk 容量的大型对象,Netty 就不再使用池化管理方式了,在每次请求分配内存时单独创建特殊的非池化 PoolChunk 对象进行管理,当对象内存释放时整个PoolChunk 内存释放。

如果需要一定数量空间远小于 PageSize 的 ByteBuf 对象,例如,创建 256 Byte 的 ByteBuf,按照上述算法,就需要为每个小 ByteBuf 对象分配一个 Page,这就出现了很多内存碎片。Netty 通过再将 Page 细分的方式,解决这个问题。Netty 将请求的空间大小向上取最近的 16 的倍数(或 2 的幂),规整后小于 PageSize 的小 Buffer 可分为两类。

  • 微型对象:规整后的大小为 16 的整倍数,如 16、32、48、……、496,一共 31 种大小。
  • 小型对象:规整后的大小为 2 的幂,如 512、1024、2048、4096,一共 4 种大小。

Netty 的实现会先从 PoolChunk 中申请空闲 Page,同一个 Page 分为相同大小的小 Buffer 进行存储;这些 Page 用 PoolSubpage 对象进行封装,PoolSubpage 内部会记录它自己能分配的小 Buffer 的规格大小、可用内存数量,并通过 bitmap 的方式记录各个小内存的使用情况(如下图所示)。虽然这种方案不能完美消灭内存碎片,但是很大程度上还是减少了内存浪费。

为了解决单个 PoolChunk 容量有限的问题,Netty 将多个 PoolChunk 组成链表一起管理,然后用 PoolChunkList 对象持有链表的 head。

Netty 通过 PoolArena 管理 PoolChunkList 以及 PoolSubpage。

PoolArena 内部持有 6 个 PoolChunkList,各个 PoolChunkList 持有的 PoolChunk 的使用率区间有所不同,如下图所示:

6 个 PoolChunkList 对象组成双向链表,当 PoolChunk 内存分配、释放,导致使用率变化,需要判断 PoolChunk 是否超过所在 PoolChunkList 的限定使用率范围,如果超出了,需要沿着 6 个 PoolChunkList 的双向链表找到新的合适的 PoolChunkList ,成为新的 head。同样,当新建 PoolChunk 分配内存或释放空间时,PoolChunk 也需要按照上面逻辑放入合适PoolChunkList 中。

从上图可以看出,这 6 个 PoolChunkList 额定使用率区间存在交叉,这样设计的原因是:如果使用单个临界值的话,当一个 PoolChunk 被来回申请和释放,内存使用率会在临界值上下徘徊,这就会导致它在两个 PoolChunkList 链表中来回移动。

PoolArena 内部持有 2 个 PoolSubpage 数组,分别存储微型 Buffer 和小型 Buffer 的PoolSubpage。相同大小的 PoolSubpage 组成链表,不同大小的 PoolSubpage 链表的 head 节点保存在 tinySubpagePools 或者 smallSubpagePools 数组中,如下图:

5.3 并发处理

内存分配释放不可避免地会遇到多线程并发场景,PoolChunk 的完全平衡树标记以及 PoolSubpage 的 bitmap 标记都是多线程不安全的,都是需要加锁同步的。为了减少线程间的竞争,Netty 会提前创建多个 PoolArena(默认数量为 2 * CPU 核心数),当线程首次请求池化内存分配,会找被最少线程持有的 PoolArena,并保存线程局部变量 PoolThreadCache 中,实现线程与 PoolArena 的关联绑定。

Netty 还提供了延迟释放的功能,来提升并发性能。当内存释放时,PoolArena 并没有马上释放,而是先尝试将该内存关联的 PoolChunk 和 Chunk 中的偏移位置等信息存入 ThreadLocal 的固定大小缓存队列中,如果该缓存队列满了,则马上释放内存。当有新的分配请求时,PoolArena 会优先访问线程本地的缓存队列,查询是否有缓存可用,如果有,则直接分配,提高分配效率。

博文参考
关注
打赏
1657692713
查看更多评论
立即登录/注册

微信扫码登录

0.0476s