您当前的位置: 首页 > 

庄小焱

暂无认证

  • 2浏览

    0关注

    805博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

JDK源码——volatile类

庄小焱 发布时间:2021-11-26 08:49:25 ,浏览量:2

摘要

博文介绍volatile关键字和atomic类的原理与源码分析。

一、JMM原理

java虚拟机有自己的内存模型(Java Memory Model,JMM),JMM可以屏蔽掉各种硬件和操作系统的内存访问差异,以实现让java程序在各种平台下都能达到一致的内存访问效果。JMM决定一个线程对共享变量的写入何时对另一个线程可见,JMM定义了线程和主内存之间的抽象关系:共享变量存储在主内存(Main Memory)中,每个线程都有一个私有的本地内存(Local Memory),本地内存保存了被该线程使用到的主内存的副本拷贝,线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存中的变量。这三者之间的交互关系如下:

计算机在执行程序时,每条指令都是在CPU中执行的,而执行指令过程中,势必涉及到数据的读取和写入。由于程序运行过程中的临时数据是存放在主存(物理内存)当中的,这时就存在一个问题,由于CPU执行速度很快,而从内存读取数据和向内存写入数据的过程跟CPU执行指令的速度比起来要慢的多,因此如果任何时候对数据的操作都要通过和内存的交互来进行,会大大降低指令执行的速度。因此在CPU里面就有了高速缓存。也就是,当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中。

这段代码:

i = i + 1;

当线程执行这个语句时,会先从主存当中读取i的值,然后复制一份到高速缓存当中,然后CPU执行指令对i进行加1操作,然后将数据写入高速缓存,最后将高速缓存中i最新的值刷新到主存当中。

这个代码在单线程中运行是没有任何问题的,但是在多线程中运行就会有问题了。在多核CPU中,每条线程可能运行于不同的CPU中,因此每个线程运行时有自己的高速缓存(对单核CPU来说,其实也会出现这种问题,只不过是以线程调度的形式来分别执行的)。本文我们以多核CPU为例。

比如同时有2个线程执行这段代码,假如初始时i的值为0,那么我们希望两个线程执行完之后i的值变为2。但是事实会是这样吗?

可能存在下面一种情况:初始时,两个线程分别读取i的值存入各自所在的CPU的高速缓存当中,然后线程1进行加1操作,然后把i的最新值1写入到内存。此时线程2的高速缓存当中i的值还是0,进行加1操作之后,i的值为1,然后线程2把i的值写入内存。最终结果i的值是1,而不是2。这就是著名的缓存一致性问题。通常称这种被多个线程访问的变量为共享变量。

二、并发编程中的三个概念 2.1 可见性

可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

//线程1执行的代码
int i = 0;
i = 10;

//线程2执行的代码
j = i;

假若执行线程1的是CPU1,执行线程2的是CPU2。由上面的分析可知,当线程1执行 i =10这句时,会先把i的初始值加载到CPU1的高速缓存中,然后赋值为10,那么在CPU1的高速缓存当中i的值变为10了,却没有立即写入到主存当中。

此时线程2执行 j = i,它会先去主存读取i的值并加载到CPU2的缓存当中,注意此时内存当中i的值还是0,那么就会使得j的值为0,而不是10。这就是可见性问题,线程1对变量i修改了之后,线程2没有立即看到线程1修改的值。

2.2 原子性

原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

一个很经典的例子就是银行账户转账问题:比如从账户A向账户B转1000元,那么必然包括2个操作:从账户A减去1000元,往账户B加上1000元。试想一下,如果这2个操作不具备原子性,会造成什么样的后果。假如从账户A减去1000元之后,操作突然中止。然后又从B取出了500元,取出500元之后,再执行 往账户B加上1000元 的操作。这样就会导致账户A虽然减去了1000元,但是账户B没有收到这个转过来的1000元。所以这2个操作必须要具备原子性才能保证不出现一些意外的问题。

2.3 有序性

有序性:即程序执行的顺序按照代码的先后顺序执行。

int i = 0;              
boolean flag = false;
i = 1;                //语句1  
flag = true;          //语句2

从代码顺序上看,语句1是在语句2前面的,那么JVM在真正执行这段代码的时候会保证语句1一定会在语句2前面执行吗?不一定,为什么呢?这里可能会发生指令重排序(Instruction Reorder)。

一般来说,处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。

但是重排序也需要遵守一定规则:

  • 重排序操作不会对存在数据依赖关系的操作进行重排序。
  • 重排序是为了优化性能,但是不管怎么重排序,单线程下程序的执行结果不能被改变。

比如:a=1;b=a; 这个指令序列,由于第二个操作依赖于第一个操作,所以在编译时和处理器运行时这两个操作不会被重排序。

比如:a=1;b=2;c=a+b这三个操作,第一步(a=1)和第二步(b=2)由于不存在数据依赖关系,所以可能会发生重排序,但是c=a+b这个操作是不会被重排序的,因为需要保证最终的结果一定是c=a+b=3。

三、volatile关键字原理

volatile是Java提供的一种轻量级的同步机制。同synchronized相比(synchronized通常称为重量级锁),volatile更轻量级。一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  • 保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。
  • 禁止进行指令重排序。
  • 但是不保证原子性
3.1 共享变量的可见性
public class TestVolatile {
    
    public static void main(String[] args) {
        ThreadDemo td = new ThreadDemo();
        new Thread(td).start();
        while(true){
            if(td.isFlag()){
                System.out.println("------------------");
                break;
            }
        }
    }

}

class ThreadDemo implements Runnable {
    private  boolean flag = false;
    @Override
    public void run() {
        try {
            Thread.sleep(200);
        } catch (InterruptedException e) {
        }
        flag = true;
        System.out.println("flag=" + isFlag());
    }

    public boolean isFlag() {
        return flag;
    }
}

开启一个多线程去改变flag为true,main 主线程中可以输出"------------------"吗?答案是NO! 这个结论会让人有些疑惑,可以理解。开启的线程虽然修改了flag 的值为true,但是还没来得及写入主存当中,此时main里面的 td.isFlag()还是false,但是由于 while(true)  是底层的指令来实现,速度非常之快,一直循环都没有时间去主存中更新td的值,所以这里会造成死循环!运行结果如下:

如何解决呢?只需将 flag 声明为volatile,即可保证在开启的线程A将其修改为true时,main主线程可以立刻得知:

  1. 使用volatile关键字会强制将修改的值立即写入主存;
  2. 使用volatile关键字的话,当开启的线程进行修改时,会导致main线程的工作内存中缓存变量flag的缓存行无效(反映到硬件层的话,就是CPU的L1缓存中对应的缓存行无效);
  3. 由于线程main的工作内存中缓存变量flag的缓存行无效,所以线程main再次读取变量flag的值时会去主存读取。

volatile具备两种特性,第一就是保证共享变量对所有线程的可见性。将一个共享变量声明为volatile后,会有以下效应:

  1. 当写一个volatile变量时,JMM会把该线程对应的本地内存中的变量强制刷新到主内存中去;
  2. 这个写会操作会导致其他线程中的缓存无效。

3.2 禁止指令从排
// 双重检查锁机制模式(double checked locking)

class Singleton{
    private volatile static Singleton instance = null;

    private Singleton() {
    }

    public static Singleton getInstance() {
        if(instance==null) {
            synchronized (Singleton.class) {
                if(instance==null)
                    instance = new Singleton();
            }
        }
        return instance;
    }
}

instance = new Singleton(); 这段代码可以分为三个步骤:

  • 1、memory = allocate() 分配对象的内存空间
  • 2、ctorInstance() 初始化对象
  • 3、instance = memory 设置instance指向刚分配的内存

但是此时有可能发生指令重排,CPU 的执行顺序可能为:

  • 1、memory = allocate() 分配对象的内存空间
  • 3、instance = memory 设置instance指向刚分配的内存
  • 2、ctorInstance() 初始化对象

在单线程的情况下,1->3->2这种顺序执行是没有问题的,但是如果是多线程的情况则有可能出现问题,线程A执行到11行代码,执行了指令1和3,此时instance已经有值了,值为第一步分配的内存空间地址,但是还没有进行对象的初始化;此时线程B执行到了第8行代码处,此时instance已经有值了则return instance,线程B使用instance的时候,就会出现异常。这里可以使用 volatile 来禁止指令重排序。

package com.mmall.concurrency.example.count;
import java.util.concurrent.CountDownLatch;

/**
 * @author: xjl
 * @Description:
 * @Date: Created in 15:05 2021/12/01
 * @Modified by:
 */
public class CountTest {
    // 请求总数
    public static int clientTotal = 5000;
    public static volatile int count = 0;

    public static void main(String[] args) throws Exception {
        //使用CountDownLatch来等待计算线程执行完
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        //开启clientTotal个线程进行累加操作
        for(int i=0;i            
关注
打赏
1657692713
查看更多评论
0.0400s