点击上方“何俊林”,马上关注,每天早上8:50准时推送
真爱,请置顶或星标
本文转载自https://www.jianshu.com/p/fc8209499688
前言HashMap在put的时候,插入的元素超过了容量(由负载因子决定)的范围就会触发扩容操作,就是rehash,这个会重新将原数组的内容重新hash到新的扩容数组中,在多线程的环境下,可能造成闭环链表,导致在get时会出现死循环,所以HashMap是线程不安全的。
我们来了解另一个键值存储集合HashTable,它是线程安全的,它在所有涉及到多线程操作的都加上了synchronized关键字来锁住整个table,这就意味着所有的线程都在竞争一把锁,在多线程的环境下,它是安全的,但是无疑是效率低下的。
其实HashTable有很多的优化空间,锁住整个table这么粗暴的方法可以变相的柔和点,比如在多线程的环境下,对不同的数据集进行操作时其实根本就不需要去竞争一个锁,因为他们不同hash值,不会因为rehash造成线程不安全,所以互不影响,这就是锁分离技术(分段锁技术),将锁的粒度降低,利用多个锁来控制多个小的table,这就是这篇文章的主角ConcurrentHashMap JDK1.7版本的核心思想,JDK1.8在此基础上又进行了进一步降低锁粒度。
一、ConcurrentHashMap JDK1.7的实现在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成,如下图所示:
ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组。 final Segment[] segments;
Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁,也就是上面的提到的锁分离技术(分段锁技术),而每一个Segment元素存储的是HashEntry数组+链表,这个和HashMap的数据存储结构一样
Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,所以,并发环境下,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。 HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。
static final class HashEntry { final int hash; final K key; volatile V value; volatile HashEntry next; //其他省略 }
我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法
Segment(float lf, int threshold, HashEntry[] tab) { this.loadFactor = lf;//负载因子 this.threshold = threshold;//阈值 this.table = tab;//主干数组即HashEntry数组 }
我们来看下ConcurrentHashMap的构造方法
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536 if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5 int sshift = 0; //ssize 为segments数组长度,根据concurrentLevel计算得出 int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } ... }
初始化方法有三个参数,如果用户不指定则会使用默认值,initialCapacity为16,loadFactor为0.75(负载因子,扩容时需要参考),concurrentLevel为16。 从上面的代码可以看出来,Segment数组的大小ssize是由concurrentLevel来决定的,但是却不一定等于concurrentLevel,ssize一定是大于或等于concurrentLevel的最小的2的次幂。比如:默认情况下concurrentLevel是16,则ssize为16;若concurrentLevel为14,ssize为16;若concurrentLevel为17,则ssize为32。为什么Segment的数组大小一定是2的次幂?其实主要是便于通过按位与的散列算法来定位Segment的index。 put方法
public V put(K key, V value) { Segment s; //concurrentHashMap不允许key/value为空 if (value == null) throw new NullPointerException(); //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀 int hash = hash(key); //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); }
从源码看出,put的主要逻辑也就两步:1.定位segment并确保定位的Segment已初始化 2.调用Segment的put方法。
关于segmentShift和segmentMasksegmentShift和segmentMask这两个全局变量的主要作用是用来定位Segment,int j =(hash >>> segmentShift) & segmentMask。 segmentMask:段掩码,假如segments数组长度为16,则段掩码为16-1=15;segments长度为32,段掩码为32-1=31。这样得到的所有bit位都为1,可以更好地保证散列的均匀性 segmentShift:2的sshift次方等于ssize,segmentShift=32-sshift。若segments长度为16,segmentShift=32-4=28;若segments长度为32,segmentShift=32-5=27。而计算得出的hash值最大为32位,无符号右移segmentShift,则意味着只保留高几位(其余位是没用的),然后与段掩码segmentMask位运算来定位Segment。
get方法
public V get(Object key) { Segment s; HashEntry[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; //先定位Segment,再定位HashEntry if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。
来看下concurrentHashMap代理到Segment上的put方法,Segment中的put方法是要加锁的。只不过是锁粒度细了而已。
size操作 计算ConcurrentHashMap的元素大小是一个有趣的问题,因为他是并发操作的,就是在你计算size的时候,他还在并发的插入数据,可能会导致你计算出来的size和你实际的size有相差(在你return size的时候,插入了多个数据),要解决这个问题,JDK1.7版本用两种方案。
try { for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation } sum = 0L; size = 0; overflow = false; for (int j = 0; j < segments.length; ++j) { Segment seg = segmentAt(segments, j); if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) segmentAt(segments, j).unlock(); } }
第一种方案他会使用不加锁的模式去尝试多次计算ConcurrentHashMap的size,最多三次,比较前后两次计算的结果,结果一致就认为当前没有元素加入,计算的结果是准确的; 第二种方案是如果第一种方案不符合,他就会给每个Segment加上锁,然后计算ConcurrentHashMap的size返回。
二、ConcurrentHashMap JDK1.8的实现JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本。
在深入JDK1.8的put和get实现之前要知道一些常量设计和数据结构,这些是构成ConcurrentHashMap实现结构的基础,下面看一下基本属性:
// node数组最大容量:2^30=1073741824 private static final int MAXIMUM_CAPACITY = 1 << 30; // 默认初始值,必须是2的幕数 private static final int DEFAULT_CAPACITY = 16; //数组可能最大值,需要与toArray()相关方法关联 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //并发级别,遗留下来的,为兼容以前的版本 private static final int DEFAULT_CONCURRENCY_LEVEL = 16; // 负载因子 private static final float LOAD_FACTOR = 0.75f; // 链表转红黑树阀值,> 8 链表转换为红黑树 static final int TREEIFY_THRESHOLD = 8; //树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo)) static final int UNTREEIFY_THRESHOLD = 6; static final int MIN_TREEIFY_CAPACITY = 64; private static final int MIN_TRANSFER_STRIDE = 16; private static int RESIZE_STAMP_BITS = 16; // 2^15-1,help resize的最大线程数 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; // 32-16=16,sizeCtl中记录size大小的偏移量 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; // forwarding nodes的hash值 static final int MOVED = -1; // 树根节点的hash值 static final int TREEBIN = -2; // ReservationNode的hash值 static final int RESERVED = -3; // 可用处理器数量 static final int NCPU = Runtime.getRuntime().availableProcessors(); //存放node的数组 transient volatile Node[] table; /*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义 *当为负数时:-1代表正在初始化,-N代表有N-1个线程正在 进行扩容 *当为0时:代表当时的table还没有被初始化 *当为正数时:表示初始化或者下一次进行扩容的大小 */ private transient volatile int sizeCtl;
基本属性定义了ConcurrentHashMap的一些边界以及操作时的一些控制,下面看一些内部的一些结构组成,这些是整个ConcurrentHashMap整个数据结构的核心。
NodeNode是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据,源代码如下
static class Node implements Map.Entry { //链表的数据结构 final int hash; final K key; //val和next都会在扩容时发生变化,所以加上volatile来保持可见性和禁止重排序 volatile V val; volatile Node next; Node(int hash, K key, V val, Node next) { this.hash = hash; this.key = key; this.val = val; this.next = next; } public final K getKey() { return key; } public final V getValue() { return val; } public final int hashCode() { return key.hashCode() ^ val.hashCode(); } public final String toString(){ return key + "=" + val; } //不允许更新value public final V setValue(V value) { throw new UnsupportedOperationException(); } public final boolean equals(Object o) { Object k, v, u; Map.Entry e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry)o).getKey()) != null && (v = e.getValue()) != null && (k == key || k.equals(key)) && (v == (u = val) || v.equals(u))); } //用于map中的get()方法,子类重写 Node find(int h, Object k) { Node e = this; if (k != null) { do { K ek; if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; } while ((e = e.next) != null); } return null; } }
Node数据结构很简单,从上可知,就是一个链表,但是只允许对数据进行查找,不允许进行修改。
TreeNodeTreeNode继承与Node,但是数据结构换成了二叉树结构,它是红黑树的数据的存储结构,用于红黑树中存储数据,当链表的节点数大于8时会转换成红黑树的结构,他就是通过TreeNode作为存储结构代替Node来转换成黑红树源代码如下。
static final class TreeNode extends Node { //树形结构的属性定义 TreeNode parent; // red-black tree links TreeNode left; TreeNode right; TreeNode prev; // needed to unlink next upon deletion boolean red; //标志红黑树的红节点 TreeNode(int hash, K key, V val, Node next, TreeNode parent) { super(hash, key, val, next); this.parent = parent; } Node find(int h, Object k) { return findTreeNode(h, k, null); } }TreeBin
TreeBin从字面含义中可以理解为存储树形结构的容器,而树形结构就是指TreeNode,所以TreeBin就是封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制,部分源码结构如下。
static final class TreeBin extends Node { //指向TreeNode列表和根节点 TreeNode root; volatile TreeNode first; volatile Thread waiter; volatile int lockState; // 读写锁状态 static final int WRITER = 1; // 获取写锁的状态 static final int WAITER = 2; // 等待写锁的状态 static final int READER = 4; // 增加数据时读锁的状态 /** * 初始化红黑树 ...... }
我们先通过new ConcurrentHashMap()来进行初始化
public ConcurrentHashMap() { }
由上你会发现ConcurrentHashMap的初始化其实是一个空实现,并没有做任何事,这里后面会讲到,这也是和其他的集合类有区别的地方,初始化操作并不是在构造函数实现的,而是在put操作中实现,当然ConcurrentHashMap还提供了其他的构造函数,有指定容量大小或者指定负载因子,跟HashMap一样,这里就不做介绍了。
put操作public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for put and putIfAbsent */ final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); //两次hash,减少hash冲突,可以均匀分布 int binCount = 0; for (Node[] tab = table;;) { //对这个table进行迭代 Node f; int n, i, fh; //这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化 if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果i位置没有数据,就直接无锁插入 if (casTabAt(tab, i, null, new Node(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED)//如果在进行扩容,则先进行扩容操作 tab = helpTransfer(tab, f); else { V oldVal = null; //如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点 synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { //表示该节点是链表结构 binCount = 1; for (Node e = f;; ++binCount) { K ek; //这里涉及到相同的key进行put就会覆盖原先的value if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node pred = e; if ((e = e.next) == null) { //插入链表尾部 pred.next = new Node(hash, key, value, null); break; } } } else if (f instanceof TreeBin) {//红黑树结构 Node p; binCount = 2; //红黑树结构旋转插入 if ((p = ((TreeBin)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { //如果链表的长度大于8时就会进行红黑树的转换 if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount);//统计size,并且检查是否需要扩容 return null; }
这个put的过程很清晰,对当前的table进行无条件自循环直到put成功,可以分成以下六步流程来概述。
-
a、如果没有初始化就先调用initTable()方法来进行初始化过程
-
b、如果没有hash冲突就直接CAS插入
-
c、如果还在进行扩容操作就先进行扩容
-
d、如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,
-
e、最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环
-
f、如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容
现在我们来对每一步的细节进行源码分析,在第一步中,符合条件会进行初始化操作,我们来看看initTable()方法
private final Node[] initTable() { Node[] tab; int sc; while ((tab = table) == null || tab.length == 0) {//空的table才能进入初始化操作 if ((sc = sizeCtl) < 0) //sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程 Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//CAS操作SIZECTL为-1,表示初始化状态 try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node[] nt = (Node[])new Node[n];//初始化 table = tab = nt; sc = n - (n >>> 2);//记录下次扩容的大小 } } finally { sizeCtl = sc; } break; } } return tab; }
在第二步中没有hash冲突就直接调用Unsafe的方法CAS插入该元素,进入第三步如果容器正在扩容,则会调用helpTransfer()方法帮助扩容,其实helpTransfer()方法的目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作
扩容过程有点复杂,这里主要涉及到多线程并发扩容,ForwardingNode的作用就是支持扩容操作,将已处理的节点和空节点置为ForwardingNode,并发处理时多个线程经过ForwardingNode就表示已经遍历了,就往后遍历,下图是多线程合作扩容的过程
介绍完扩容过程,我们再次回到put流程,在第四步中是向链表或者红黑树里加节点,到第五步,会调用treeifyBin()方法进行链表转红黑树的过程。
private final void treeifyBin(Node[] tab, int index) { Node b; int n, sc; if (tab != null) { //如果整个table的数量小于64,就扩容至原来的一倍,不转红黑树了 //因为这个阈值扩容可以减少hash冲突,不必要去转红黑树 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode hd = null, tl = null; for (Node e = b; e != null; e = e.next) { //封装成TreeNode TreeNode p = new TreeNode(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } //通过TreeBin对象对TreeNode转换成红黑树 setTabAt(tab, index, new TreeBin(hd)); } } } } }
到第六步表示已经数据加入成功了,现在调用addCount()方法计算ConcurrentHashMap的size,在原来的基础上加一,现在来看看addCount()方法。
private final void addCount(long x, int check) { CounterCell[] as; long b, s; //更新baseCount,table的数量,counterCells表示元素个数的变化 if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; //如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); } //check>=0表示需要进行扩容操作 if (check >= 0) { Node[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } //当前线程发起库哦哦让操作,nextTable=null else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }
put的流程现在已经分析完了,你可以从中发现,他在并发处理中使用的是乐观锁,当有冲突的时候才进行并发处理,而且流程步骤很清晰,但是细节设计的很复杂,毕竟多线程的场景也复杂。
get操作我们现在要回到开始的例子中,我们对个人信息进行了新增之后,我们要获取所新增的信息,使用String name = map.get(“name”)获取新增的name信息,现在我们依旧用debug的方式来分析下ConcurrentHashMap的获取方法get()
public V get(Object key) { Node[] tab; Node e, p; int n, eh; K ek; int h = spread(key.hashCode()); //计算两次hash if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素 if ((eh = e.hash) == h) { //如果该节点就是首节点就返回 if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来 //查找,查找到就返回 else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历 if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
ConcurrentHashMap的get操作的流程很简单,也很清晰,可以分为三个步骤来描述 a、计算hash值,定位到该table索引位置,如果是首节点符合就返回 b、如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回 c、以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null size操作 最后我们来看下例子中最后获取size的方式int size = map.size();,现在让我们看下size()方法
public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n); } final long sumCount() { CounterCell[] as = counterCells; CounterCell a; //变化的数量 long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
在JDK1.8版本中,对于size的计算,在扩容和addCount()方法就已经有处理了,JDK1.7是在调用size()方法才去计算,其实在并发集合中去计算size是没有多大的意义的,因为size是实时在变的,只能计算某一刻的大小,但是某一刻太快了,人的感知是一个时间段,所以并不是很精确。
三、总结与思考其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树,相对而言,总结如下思考:
1、JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)
2、JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了
3、JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档
4、JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock,我觉得有以下几点:
-
a、因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了
-
b、JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然
-
c、在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据