您当前的位置: 首页 >  计算机视觉

暂无认证

  • 0浏览

    0关注

    92582博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

计算机视觉|图像中的信息识别

发布时间:2019-10-29 00:00:00 ,浏览量:0

欢迎点击「算法与编程之美」↑关注我们!

本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。

1.为什么需要电脑对图片中的数字和字将进行识别:

在生活中,很多时候需要识别一些图片中的数字和字母,就像很多网站的验证码识别,对于个人来说,单个的此类事件需要的时间和精力很少,可对于一些机构、企业来说,可能就需要重复很多次(例如某些机构需要向某网站提交多次文档、申请多次访问等操作)。这时,大量的此类工作对于人眼的损耗较大,不但需要损耗人力,同时由于眼花和疲劳等原因可能会导致读取出来的信息出现差错,从而降低效率。所以,就需要使用电脑来执行这一操作。

2. python 实现的原理和步骤:

2.1环境搭建:

需要python安装opcv、numpy、pil和pytesseract这几个第三方库;

2.2基本原理介绍:

通过图像的预处理操作后,再将读取出来的数组转换成image形式,然后提取图片的有用信息。

2.3方法步骤简介:

首先是图片的预处理操作,一般顺序为先进行图像的二值化,之后再对图片进行数字形态学运算(主要是开运算),由于pytesseract内置函数识别的图片是image形式而不是opencv中的多维数组形式,所以在识别之前需要先使用pil中的image函数将图片格式进行转换,最后再通过pytesseracr中的函数进行识别。

大致简单代码如下:

import  cv2  as  cv  import  numpy  as  np  from  PIL  import  Image  import  pytesseract  as  tess

#构造函数  def recognize_text():

#灰度化图像:        gray  = cv. cvtColor(src, Cv. COLOR_BGR2GRAY)

#二值化图像:        ret, binary  = cv. threshold(gray, 0 ,255, cv. THRESH_BINARY_INV  | cv. THRESH_OTSU)

#开运算:        kernel = cv. getstructuringelement(cv. MORPH_RECT,  (1,2))#使用1*2的面积元素        bin1 = cv. morphologyEx(binary,  cv. MORPH_OPEN, kernel)        kernel = cv. getstructuringelement(cv. MORPH_RECT,  (2,1))#使用2*1的面积元素        open_out  =  cv. morphologyex(bin1, cv. MORPH_OPEN, kernel              cv.bitwise_not(open_out, open_out)#将图片背景转换为白色

#转换图片格式        textImage  =  Image. fromarray(open_out)

#读取信息        text  =  tess. image_to_string(textImage)        print(text)     sre cv. imread("图像路径")   cv. namedWindow("input image". WINDOW_AUTOSIZE)   cv. imshow("input image", sre)

#调用函数

recognize_text(src)

cv.waitKey(0)  cv.destroyAllWindows()

总结:

上述步骤和代码只是一个基本思路和例子,具体步骤代码还需要结合图片的具体情况,有的图片可能不需要开运算就可以直接进行后面的操作,也有一些图片需要进行多次开运算的处理,所以还需要结合实际情况进行调整后使用。

END

实习编辑   |   王文星

责      编   |   饶龙江

 where2go 团队

   

微信号:算法与编程之美          

640?wx_fmt=jpeg

长按识别二维码关注我们!

温馨提示:点击页面右下角“写留言”发表评论,期待您的参与!期待您的转发!

关注
打赏
1653961664
查看更多评论
立即登录/注册

微信扫码登录

0.3527s