您当前的位置: 首页 > 

phymat.nico

暂无认证

  • 1浏览

    0关注

    1967博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

常用编码详解

phymat.nico 发布时间:2015-01-07 16:59:09 ,浏览量:1

本文在对各种资料整理后详细介绍各种常见编码的转换算法。
一、通用字符集(UCS)
ISO/IEC 10646-1 [ISO-10646]定义了一种多于8比特字节的字符集,称作通用字符集(UCS),它包含了世界上大多数可书写的字符系统。已定义了两种多8比特字节编码,对每一个字符采用四个8比特字节编码的称为UCS-4,对每一个字符采用两个8比特字节编码的称为UCS-2。它们仅能够对UCS的前64K字符进行编址,超出此范围的其它部分当前还没有分配编址。
二、基本多语言面(BMP)
ISO 10646 定义了一个31位的字符集。 然而,在这巨大的编码空间中,迄今为止只分配了前65534个码位 (0x0000 到 0xFFFD)。 这个UCS的16位子集称为 “基本多语言面 ”(Basic Multilingual Plane, BMP)。 
三、Unicode编码
历史上, 有两个独立的, 创立单一字符集的尝试。 一个是国际标准化组织(ISO)的 ISO 10646 项目; 另一个是由(一开始大多是美国的)多语言软件制造商组成的协会组织的 Unicode 项目。幸运的是, 1991年前后, 两个项目的参与者都认识到: 世界不需要两个不同的单一字符集。它们合并双方的工作成果,并为创立一个单一编码表而协同工作。 两个项目仍都存在并独立地公布各自的标准, 但 Unicode 协会和 ISO/IEC JTC1/SC2 都同意保持 Unicode 和 ISO 10646 标准的码表兼容, 并紧密地共同调整任何未来的扩展。Unicode 标准额外定义了许多与字符有关的语义符号学, 一般而言是对于实现高质量的印刷出版系统的更好的参考。
四、UTF-8编码
UCS-2和UCS-4编码很难在许多当前的应用和协议中使用,这些应用和协议假定字符为一个8或7比特的字节。即使新的可以处理16比特字符的系统,却不能处理UCS-4数据。这种情况导致一种称为UCS转换格式(UTF)的发展,它每一种有不同的特征。 UTF-8(RFC 2279),使用了8比特字节的所有位,保持全部US-ASCII取值范围的性质:US-ASCII字符用一个8比特字节编码,采用通常的US-ASCII值,因此,在此值下的任何一个8比特位字节仅仅代表一个US-ASCII字符,而不会为其他字符。它有如下的特性:
1)UTF-8向UCS-4,UCS-2两者中任一个进行相互转换比较容易。
2)多8比特字节序列的第一个8比特字节指明了系列中8比特字节的数目。
3)8比特字节值FE和FF永远不会出现。
4)在8比特字符流中字符边界从哪里开始较容易发现。
UTF-8定义:
在UTF-8中,字符采用1到6个8比特字节的序列进行编码。仅仅一个8比特字节的一个序列中,字节的高位为0,其他的7位用于字符值编码。n(n>1)个8比特字节的一个序列中,初始的8比特字节中高n位为1,接着一位为0,此字节余下的位包含被编码字符值的位。接着的所有8比特字节的最高位为1,接着下一位为0,余下每个字节6位包含被编码字符的位。
下表总结了这些不同的8比特字节类型格式。字母x指出此位来自于进行编码的UCS-4字符值。
 
   UCS-4范围(16进制)     UTF-8 系列(二进制)
   0000 00000000 007F   0xxxxxxx
   0000 00800000 07FF   110xxxxx 10xxxxxx
   0000 08000000 FFFF   1110xxxx 10xxxxxx 10xxxxxx
   0001 0000001F FFFF   11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
   0020 000003FF FFFF   111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
   0400 00007FFF FFFF   1111110x 10xxxxxx ... 10xxxxxx
 
从UCS-4 到 UTF-8编码规则如下:
1)从字符值和上表第一列中决定需要的8比特字节数目。着重指出的是上表中的行是相互排斥的,也就是说,对于一个给定的UCS-4字符,仅仅有一个有效的编码。
2)按照上表中第二列每行那样准备8比特字节的高位。
3)将UCS字符值的位,从低位起填充在标记为x地方。从UTF8序列中最后一个字节填起,然后剩下的字符值依次放到前一个字节中,如此重复,直到所有标记位x的位都进行了填充。
这里我们仅仅实现Unicode到UTF8的转换,Unicode都是两个字节,定义为:
  1. typedef usigned short WCHAR
  2.  
  3. // 输出的UTF8编码至多是3个字节。
  4.  
  5. int UnicodeToUTF8(WCHAR ucs2, unsigned char *buffer)
  6. {
  7.     memset(buffer, 0, 4);
  8.     if ((0x0000 
    12) & 0x001f);
  9.        return 3;
  10.     }
  11.     return 0;
  12. }  
复制代码
理论上,简单的通过用2个0值的8比特字节来扩展每个UCS-2字符,则从UCS-2到UTF-8编码的算法可以从上面得到。然而,从D800到DFFF间的UCS-2值对(用Unicode说法是代理对),实际上是通过UTF-16来进行UCS-4字符转换,因此需要特别对待:UTF-16转换必须未完成,先转换到于UCS-4字符,然后按照上面过程进行转换。
从UTF-8到UCS-4解码过程如下:
1)初始化UCS-4字符4个8比特字节的所有位为0。
2)根据序列中8比特字节数和上表中第二列(标记为x位)来决定哪些位编码用于字符值。
3)从编码序列分配位到UCS-4字符。首先从序列最后一个8比特字节的最低位开始,接着向左进行,直到所有标记为x的位完成。如果UTF-8序列长度不大于3个8比特字节,解码过程可以直接赋予UCS-2。
  1. WCHAR UTF8ToUnicode(unsigned char *buffer)
  2. {
  3.     WCHAR temp = 0;
  4.     if (buffer[0] < 0x80)                                   // one char of UTF8
  5.     { 
  6.        temp = buffer[0];
  7.     }
  8.     if ((0xc0             
关注
打赏
1659628745
查看更多评论
立即登录/注册

微信扫码登录

0.0498s