原文地址:https://mmoaay.gitbooks.io/boost-asio-cpp-network-programming-chinese/content/Chapter1.html
Boost.Asio入门首先,让我们先来了解一下什么是Boost.Asio?怎么编译它?了解的过程中我们会给出一些例子。然后在发现Boost.Asio不仅仅是一个网络库的同时你也会接触到Boost.Asio中最核心的类——io_service。
什么是Boost.Asio简单来说,Boost.Asio是一个跨平台的、主要用于网络和其他一些底层输入/输出编程的C++库。
计算机网络的设计方式有很多种,但是Boost.Asio的的方式远远优于其它的设计方式。它在2005年就被包含进Boost,然后被大量Boost的用户测试并在很多项目中使用,比如Remobo(http://www.remobo.com),可以让你创建你自己的即时私有网络(IPN)的应用,libtorrent(http://www.rasterbar.com/products/libtorrent))一个实现了比特流客户端的库,PokerTH (http://www.pokerth.net)一个支持LAN和互联网对战的纸牌游戏。
Boost.Asio在网络通信、COM串行端口和文件上成功地抽象了输入输出的概念。你可以基于这些进行同步或者异步的输入输出编程。
read(stream, buffer [, extra options])
async_read(stream, buffer [, extra options], handler)
write(stream, buffer [, extra options])
async_write(stream, buffer [, extra options], handler)
从前面的代码片段可以看出,这些函数支持传入包含任意内容(不仅仅是一个socket,我们可以对它进行读写)的流实例。
作为一个跨平台的库,Boost.Asio可以在大多数操作系统上使用。能同时支持数千个并发的连接。其网络部分的灵感来源于伯克利软件分发(BSD)socket,它提供了一套可以支持传输控制协议(TCP)socket、用户数据报协议(UDP)socket和Internet控制消息协议(IMCP)socket的API,而且如果有需要,你可以对其进行扩展以支持你自己的协议。
历史Boost.Asio在2003被开发出来,然后于2005年的12月引入到Boost 1.35版本中。原作者是Christopher M. Kohlhoff,你可以通过chris@kohlhoff.com联系他。
这个库在以下的平台和编译器上测试通过:
- 32-bit和64-bit Windows,使用Visual C++ 7.1及以上
- Windows下使用MinGW
- Windows下使用Cygwin(确保已经定义 __USE_232_SOCKETS)
- 基于2.4和2.6内核的Linux,使用g++ 3.3及以上
- Solaris下使用g++ 3.3及以上
- MAC OS X 10.4以上下使用g++ 3.3及以上
它也可能能在诸如AIX 5.3,HP-UX 11i v3,QNX Neutrino 6.3,Solaris下使用Sun Studio 11以上,True64 v5.1,Windows下使用Borland C++ 5.9.2以上等平台上使用。(更多细节请咨询www.boost.org)
依赖Boost.Asio依赖于如下的库:
- Boost.System:这个库为Boost库提供操作系统支持(http://www.boost.org/doc/libs/1_51_0/doc/html/boost_system/index.html)
- Boost.Regex:使用这个库(可选的)以便你重载read_until()或者async_read_until()时使用boost::regex参数。
- Boost.DateTime:使用这个库(可选的)以便你使用Boost.Asio中的计时器
- OpenSSL:使用这个库(可选的)以便你使用Boost.Asio提供的SSL支持。
Boost.Asio是一个只需要引入头文件就可以使用的库。然而,考虑到你的编译器和程序的大小,你可以选择用源文件的方式来编译Boost.Asio。如果你想要这么做以减少编译时间,有如下几种方式:
在某个源文件中,添加#include "boost/asio/impl/src.hpp"(如果你在使用SSL,添加#include "boost/asio/ssl/impl/src.hpp")在所有的源文件中,添加#define BOOST_ASIO_SEPARATE_COMPILATION
注意Boost.Asio依赖于Boost.System,必要的时候还依赖于Boost.Regex,所以你需要用如下的指令先编译Boost:
bjam –with-system –with-regex stage
如果你还想同时编译tests,你需要使用如下的指令:
bjam –with-system –with-thread –with-date_time –with-regex –with-serialization stage
这个库有大量的例子,你可以连同本书中的例子一块看看。
重要的宏如果设置了BOOST_ASIO_DISABLE_THREADS;不管你是否在编译Boost的过程中使用了线程支持,Boost.Asio中的线程支持都会失效。
同步VS异步首先,异步编程和同步编程是非常不同的。在同步编程中,所有的操作都是顺序执行的,比如从socket中读取(请求),然后写入(回应)到socket中。每一个操作都是阻塞的。因为操作是阻塞的,所以为了不影响主程序,当在socket上读写时,通常会创建一个或多个线程来处理socket的输入/输出。因此,同步的服务端/客户端通常是多线程的。
相反的,异步编程是事件驱动的。虽然启动了一个操作,但是你不知道它何时会结束;它只是提供一个回调给你,当操作结束时,它会调用这个API,并返回操作结果。对于有着丰富经验的QT(诺基亚用来创建跨平台图形用户界面应用程序的库)程序员来说,这就是他们的第二天性。因此,在异步编程中,你只需要一个线程。
因为中途做改变会非常困难而且容易出错,所以你在项目初期(最好是一开始)就得决定用同步还是异步的方式实现网络通信。不仅API有极大的不同,你程序的语意也会完全改变(异步网络通信通常比同步网络通信更加难以测试和调试)。你需要考虑是采用阻塞调用和多线程的方式(同步,通常比较简单),或者是更少的线程和事件驱动(异步,通常更复杂)。
下面是一个基础的同步客户端例子:
using boost::asio;
io_service service;
ip::tcp::endpoint ep( ip::address::from_string("127.0.0.1"), 2001);
ip::tcp::socket sock(service);
sock.connect(ep);
首先,你的程序至少需要一个io_service实例。Boost.Asio使用io_service同操作系统的输入/输出服务进行交互。通常一个io_service的实例就足够了。然后,创建你想要连接的地址和端口,再建立socket。把socket连接到你创建的地址和端口。
下面是一个简单的使用Boost.Asio的服务端:
typedef boost::shared_ptr socket_ptr;
io_service service;
ip::tcp::endpoint ep( ip::tcp::v4(), 2001)); // listen on 2001
ip::tcp::acceptor acc(service, ep);
while ( true) {
socket_ptr sock(new ip::tcp::socket(service));
acc.accept(*sock);
boost::thread( boost::bind(client_session, sock));
}
void client_session(socket_ptr sock) {
while ( true) {
char data[512];
size_t len = sock->read_some(buffer(data));
if ( len > 0)
write(*sock, buffer("ok", 2));
}
}
首先,同样是至少需要一个io_service实例。然后你指定你想要监听的端口,再创建一个接收器——一个用来接收客户端连接的对象。 在接下来的循环中,你创建一个虚拟的socket来等待客户端的连接。然后当一个连接被建立时,你创建一个线程来处理这个连接。
在client_session线程中来读取一个客户端的请求,进行解析,然后返回结果。
而创建一个异步的客户端,你需要做如下的事情:
using boost::asio;
io_service service;
ip::tcp::endpoint ep( ip::address::from_string("127.0.0.1"), 2001);
ip::tcp::socket sock(service);
sock.async_connect(ep, connect_handler);
service.run();
void connect_handler(const boost::system::error_code & ec) {
// 如果ec返回成功我们就可以知道连接成功了
}
在程序中你需要创建至少一个io_service实例。你需要指定连接的地址以及创建socket。
当连接完成时(其完成处理程序)你就异步地连接到了指定的地址和端口,也就是说,connect_handler被调用了。
当connect_handler被调用时,检查错误代码(ec),如果成功,你就可以向服务端进行异步的写入。
注意:只要还有待处理的异步操作,servece.run()循环就会一直运行。在上述例子中,只执行了一个这样的操作,就是socket的async_connect。在这之后,service.run()就退出了。
每一个异步操作都有一个完成处理程序——一个操作完成之后被调用的函数。 下面的代码是一个基本的异步服务端
using boost::asio;
typedef boost::shared_ptr socket_ptr;
io_service service;
ip::tcp::endpoint ep( ip::tcp::v4(), 2001)); // 监听端口2001
ip::tcp::acceptor acc(service, ep);
socket_ptr sock(new ip::tcp::socket(service));
start_accept(sock);
service.run();
void start_accept(socket_ptr sock) {
acc.async_accept(*sock, boost::bind( handle_accept, sock, _1) );
}
void handle_accept(socket_ptr sock, const boost::system::error_code &
err) {
if ( err) return;
// 从这里开始, 你可以从socket读取或者写入
socket_ptr sock(new ip::tcp::socket(service));
start_accept(sock);
}
在上述代码片段中,首先,你创建一个io_service实例,指定监听的端口。然后,你创建接收器acc——一个接受客户端连接,创建虚拟的socket,异步等待客户端连接的对象。
最后,运行异步service.run()循环。当接收到客户端连接时,handle_accept被调用(调用async_accept的完成处理程序)。如果没有错误,这个socket就可以用来做读写操作。
在使用这个socket之后,你创建了一个新的socket,然后再次调用start_accept(),用来创建另外一个“等待客户端连接”的异步操作,从而使service.run()循环一直保持忙碌状态。
异常处理VS错误代码Boost.Asio允许同时使用异常处理或者错误代码,所有的异步函数都有抛出错误和返回错误码两种方式的重载。当函数抛出错误时,它通常抛出boost::system::system_error的错误。
using boost::asio;
ip::tcp::endpoint ep;
ip::tcp::socket sock(service);
sock.connect(ep); // 第一行
boost::system::error_code err;
sock.connect(ep, err); // 第二行
在前面的代码中,sock.connect(ep)会抛出错误,sock.connect(ep, err)则会返回一个错误码。
看一下下面的代码片段:
try {
sock.connect(ep);
} catch(boost::system::system_error e) {
std::cout
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?