以高斯信号为例,计算幅度谱、相位谱、双边功率谱、双边功率谱密度、单边功率谱、单边功率谱密度。(转载请注明出处)
MATLAB程序代码:
- %========================================================================== %Name: spectrum_analysis.m %Desc: 以高斯信号为例,求解其频谱、双边功率谱、单边功率谱、双边功率谱密度、 % 单边功率谱密度,这里高斯信号的半波全宽FWHM=50ps,中心点位于2.5ns处。 %Parameter: %Return: %Author: yoyoba(stuyou@126.com) %Date: 2015-4-28 %Modify: 2015-4-29 %========================================================================= clc; clear; FWHM=50e-12; %高斯信号FWHM宽度,为50ps time_window=100*FWHM; %高斯信号的采样窗口宽度,该值决定了傅里叶变换后的频率分辨率 Ns=2048; %采样点 dt=time_window/(Ns-1); %采样时间间隔 t=0:dt:time_window; %采样时间 gauss_time=exp(-0.5*(2*sqrt(2*log(2))*(t-2.5e-9)/FWHM).^2); %高斯脉冲,中心位于2.5ns处。 plot(t*1e+9,gauss_time,'linewidth',2.5); xlabel('Time/ns'); ylabel('Amplitude/V'); title('Gauss pulse'); %===========以下计算双边谱、双边功率谱、双边功率谱密度================= gauss_spec=fftshift(fft(ifftshift(gauss_time))); %傅里叶变换,并且进行fftshift移位操作。 gauss_spec=gauss_spec/Ns; %求实际的幅度值; df=1/time_window; %频率分辨率 k=floor(-(Ns-1)/2:(Ns-1)/2); % k=0:Ns-1; double_f=k*df; %双边频谱对应的频点 figure; %幅度谱 plot(double_f*1e-9,abs(gauss_spec),'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Amplitude/V'); title('double Amplitude spectrum'); figure; %相位谱 plot(double_f*1e-9,angle(gauss_spec),'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Phase/rad'); title('double Phase spectrum'); figure; %功率谱 double_power_spec_W=abs(gauss_spec).^2; %双边功率谱,单位W; double_power_spec_mW=double_power_spec_W*1e+3; %双边功率谱,单位mW; double_power_spec_dBm=10*log10(double_power_spec_mW); %双边功率谱,单位dBm; plot(double_f*1e-9,double_power_spec_dBm,'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Power/dBm'); title('double Power spectrum'); figure; %功率谱密度 double_power_specD_W=abs(gauss_spec).^2/(df); %双边功率谱密度,单位W/Hz double_power_specD_mW=double_power_specD_W*1e+3; %双边功率谱密度,单位mW/Hz double_power_specD_dBm=10*log10(double_power_specD_mW);%双边功率谱密度,单位dBm/Hz plot(double_f*1e-9,double_power_specD_dBm,'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Power/(dBm/Hz)'); title('double power spectrum Density'); %==========以下计算单边谱、单边功率谱及单边功率谱密度========= gauss_spec=fft(ifftshift(gauss_time)); %计算单边谱无需fftshift gauss_spec=gauss_spec/Ns; %计算真实的幅度值 single_gauss_spec=gauss_spec(1:floor(Ns/2)); single_f=(0:floor(Ns/2)-1)*df; figure; %幅度谱 plot(single_f*1e-9,abs(single_gauss_spec),'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Amplitude/V'); title('single Amplitude spectrum'); figure; %相位谱 plot(single_f*1e-9,angle(single_gauss_spec),'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Phase/rad'); title('single Phase spectrum'); figure;%功率谱 double_power_spec_W=abs(gauss_spec).^2; single_power_spec_W=2*double_power_spec_W(1:floor(Ns/2)); %单边功率谱,单位W single_power_spec_mW=single_power_spec_W*1e+3; %单边功率谱,单位mW; single_power_spec_dBm=10*log10(single_power_spec_mW); %双边功率谱,单位dBm; plot(single_f*1e-9,single_power_spec_dBm,'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Power/dBm'); title('single Power spectrum'); figure;%功率谱密度 double_power_specD_W=abs(gauss_spec).^2/(df); single_power_specD_W=2*double_power_specD_W(1:floor(Ns/2)); %单边功率谱密度,单位W/Hz single_power_specD_mW=single_power_specD_W*1e+3; %单边功率谱密度,单位mW/Hz single_power_specD_dBm=10*log10(single_power_specD_mW); %单边功率谱密度,单位dBm/Hz plot(single_f*1e-9,single_power_specD_mW,'linewidth',2.5); xlabel('Frequency/GHz'); ylabel('Power/(dBm/Hz)'); title('single power spectrum density');
运行结果:http://blog.chinaunix.net/uid-11829250-id-4992257.htmlspectrum_analysis.rar