exgcd
应用(好像还可以求逆元)
- 应用(好像还可以求逆元)
- Code:
- 公式证明:
- ai × xi + bi × yi = gcd(ai,bi) 解这个方程的 x 和 y
#include
using namespace std;
int exgcd(int a, int b, int &x, int &y){//返回gcd(a,b) 并求出解(引用带回)
if(b==0){
x = 1, y = 0;
return a;
}
int x1,y1,gcd;
gcd = exgcd(b, a%b, x1, y1);
x = y1, y = x1 - a/b*y1;
return gcd;
}
int main(){
int n,a,b,x,y;
cin>>n;
while(n--){
cin>>a>>b;
exgcd(a,b,x,y);
cout
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?