您当前的位置: 首页 >  力语

复数和复变函数

力语 发布时间:2021-12-29 17:29:39 ,浏览量:5

复数和复变函数
  • 复数
  • 复变函数

复数

复数 z = ( 0 , y ) = i y z=(0,y)=iy z=(0,y)=iy称为纯虚数,其中复数 ( 0 , i ) (0,i) (0,i)称为虚单位。

复共轭: z ∗ = x − i y z^*=x-iy z∗=x−iy 与 z = x + i y z=x+iy z=x+iy 互为复共轭( z ∗ z ∗ = x 2 + y 2 z*z^*=x^2+y^2 z∗z∗=x2+y2)。

复数的极坐标表示: z = x + i y = r ( cos ⁡ θ + i sin ⁡ θ ) z=x+iy=r(\cos \theta +i\sin \theta) z=x+iy=r(cosθ+isinθ) ,其中 r 、 θ r、\theta r、θ 分别是复数的模和辐角,复数 z ≠ 0 z \neq 0 z​=0所对应的矢量 O z O z Oz与实轴正向的夹角 θ \theta θ称为复数 z z z的一个辐角。任一复数 z ≠ 0 z \neq 0 z​=0有无穷多个辐角,记为 Arg ⁡ z \operatorname{Arg} z Argz,对某一辐角 θ \theta θ,有 A r g   z = θ + 2 k π , k = 0 , ± 1 , ± 2 , ⋯ Arg \ z=\theta+2 k \pi, k=0, \pm 1, \pm 2, \cdots Arg z=θ+2kπ,k=0,±1,±2,⋯,一般把其中属于 ( − π , π ] (-\pi, \pi] (−π,π]的辐角称为 Arg ⁡ z \operatorname{Arg} z Argz的主值,或称为 z z z的主辐角,记为 arg ⁡ z \arg z argz。

复数的乘法、除法运算: x 1 + i y 1 x 2 + i y 2 = ( x 1 + i y 1 ) ( x 2 − i y 2 ) ( x 2 + i y 2 ) ( x 2 − i y 2 ) = x 1 x 2 + y 1 y 2 x 2 2 + y 2 2 + i y 1 x 2 − x 1 y 2 x 2 2 + y 2 2 \frac{x_{1}+\mathrm{i} y_{1}}{x_{2}+\mathrm{i} y_{2}}=\frac{\left(x_{1}+\mathrm{i} y_{1}\right)\left(x_{2}-\mathrm{i} y_{2}\right)}{\left(x_{2}+\mathrm{i} y_{2}\right)\left(x_{2}-\mathrm{i} y_{2}\right)}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+\mathrm{i} \frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}} x2​+iy2​x1​+iy1​​=(x2​+iy2​)(x2​−iy2​)(x1​+iy1​)(x2​−iy2​)​=x22​+y22​x1​x2​+y1​y2​​+ix22​+y22​y1​x2​−x1​y2​​ 极坐标表示的复数的乘法、除法运算: z 1 ⋅ z 2 = r 1 r 2 [ ( cos ⁡ ( θ 1 + θ 2 ) + i sin ⁡ ( θ 1 + θ 2 ) ] z_{1} \cdot z_{2}=r_{1} r_{2}\left[\left(\cos (\theta_{1} +\theta_{2})+i\sin (\theta_{1} +\theta_{2})\right]\right. z1​⋅z2​=r1​r2​[(cos(θ1​+θ2​)+isin(θ1​+θ2​)]

z 1 z 2 = z 1 ⋅ z 2 ∗ z 2 ⋅ z 2 ∗ = r 1 r 2 [ cos ⁡ ( θ 1 − θ 2 ) + i sin ⁡ ( θ 1 − θ 2 ) ] , z 2 ≠ 0 \frac{z_{1}}{z_{2}}=\frac{z_{1} \cdot z_{2}^{*}}{z_{2} \cdot z_{2}^{*}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right], \quad z_{2} \neq 0 z2​z1​​=z2​⋅z2∗​z1​⋅z2∗​​=r2​r1​​[cos(θ1​−θ2​)+isin(θ1​−θ2​)],z2​​=0

欧拉公式: e i θ = cos ⁡ θ + i sin ⁡ θ \mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta eiθ=cosθ+isinθ 因此复数又可表示为:

z = r e i θ z=r\mathrm{e}^{\mathrm{i} \theta} z=reiθ 指数表示的复数乘法、除法运算: z 1 ⋅ z 2 = r 1 r 2 e i ( θ 1 + θ 2 ) z 1 z 2 = r 1 r 2 e i ( θ 1 − θ 2 ) \begin{aligned} z_{1} \cdot z_{2} &=r_{1} r_{2} \mathrm{e}^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)} \\ \\\frac{z_{1}}{z_{2}} &=\frac{r_{1}}{r_{2}} \mathrm{e}^{\mathrm{i}\left(\theta_{1}-\theta_{2}\right)} \end{aligned} z1​⋅z2​z2​z1​​​=r1​r2​ei(θ1​+θ2​)=r2​r1​​ei(θ1​−θ2​)​

复变函数

一个序列的极限必然是此序列的聚点,而且是唯一的聚点。

单连通区域:在区域内作任何闭合围道,围道内的点都属于该区域。

设区域 D ⊆ C D \subseteq \mathbb{C} D⊆C, 如果对于 D D D 内的每一个复数 z z z, 都有唯一 一个复数 w w w 与之对应, w w w 和 z z z 之 间的这种对应关系记为 f f f, 则称 f f f 为定义在 D D D 上的复变函数, 其中 z z z 是函数 f f f 的自变量, w w w 称为函数 f f f 在 z z z 点的函数值, 记为:

w = f ( z ) , z ∈ G w=f(z), \quad z \in G w=f(z),z∈G 因为 z = x + i y , w = u + i v z=x+\mathrm{i} y, w=u+\mathrm{i} v z=x+iy,w=u+iv , 所以 w = f ( z ) = u ( x , y ) + i v ( x , y ) w=f(z)=u(x, y)+\mathrm{i} v(x, y) w=f(z)=u(x,y)+iv(x,y) 因此复变函数 f ( z ) f(z) f(z) 只不过是两个二元实函数 ( f (f (f 的实部 u ( x , y ) u(x, y) u(x,y) 和虚部 v ( x , y ) ) v(x, y)) v(x,y)) 的有序组合。

无穷数列 { z n } \left\{z_{n}\right\} {zn​} 也有一个特殊聚点–无穷远点 ∞ \infty ∞ ,无穷远点不在复平面 C \mathbb{C} C 内,包含无穷远点的复平面称为扩充的复平面,记作 C ‾ \overline{\mathbb{C}} C 。

为了更直观地表现无穷远点,可以引进复数球面(或称为 E i e m a n n Eiemann Eiemann 球面)

复变函数的性质

设 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+i v(x, y) f(z)=u(x,y)+iv(x,y) 在一点 z = x + i y z=x+\mathrm{i} y z=x+iy 可微,则 f ′ ( z ) = lim ⁡ Δ x → 0 Δ f Δ z = lim ⁡ Δ x → 0 Δ y → 0 Δ u + i Δ v Δ x + i Δ y Δ u = u ( x + Δ x , y + Δ y ) − u ( x , y ) Δ v = v ( x + Δ x , y + Δ y ) − v ( x , y ) f^{\prime}(z)=\lim _{\Delta x \rightarrow 0 } \frac{\Delta f}{\Delta z}=\lim _{\Delta x \rightarrow 0 \atop \Delta y \rightarrow 0} \frac{\Delta u+i \Delta v}{\Delta x+i \Delta y} \quad \begin{aligned} &\Delta u=u(x+\Delta x, y+\Delta y)-u(x, y) \\ &\Delta v=v(x+\Delta x, y+\Delta y)-v(x, y) \end{aligned} f′(z)=Δx→0lim​ΔzΔf​=Δy→0Δx→0​lim​Δx+iΔyΔu+iΔv​​Δu=u(x+Δx,y+Δy)−u(x,y)Δv=v(x+Δx,y+Δy)−v(x,y)​ 其中 Δ z \Delta z Δz 按任意方式趋于 0 0 0如果选择两个特殊的方向趋于 0 0 0 ,则两极限结果必定也相同 (必要条件)。比如: 现让 Δ z \Delta z Δz沿平行于实轴的方向趋于 0 0 0,则 f ′ ( z ) = lim ⁡ Δ x → 0 Δ y = 0 Δ u + i Δ v Δ x + i Δ y = ∂ u ∂ x + i ∂ v ∂ x f^{\prime}(z)=\lim _{\Delta x \rightarrow 0 \atop \Delta y=0} \frac{\Delta u+i \Delta v}{\Delta x+i \Delta y}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} f′(z)=Δy=0Δx→0​lim​Δx+iΔyΔu+iΔv​=∂x∂u​+i∂x∂v​ 又让 Δ z \Delta z Δz 沿平行于 y y y 轴的方向趋于 0 0 0,则 f ′ ( z ) = lim ⁡ Δ x = 0 Δ y = 0 Δ u + i Δ v Δ x + i Δ y = − i ∂ u ∂ y + ∂ v ∂ y f^{\prime}(z)=\lim _{\Delta x=0 \atop \Delta y=0} \frac{\Delta u+i \Delta v}{\Delta x+i \Delta y}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} f′(z)=Δy=0Δx=0​lim​Δx+iΔyΔu+iΔv​=−i∂y∂u​+∂y∂v​ 两个极限相等,得到如下等式 ∂ u ∂ x = ∂ v ∂ y , ∂ v ∂ x = − ∂ u ∂ y  (C-R条件)  \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \quad \text { (C-R条件) } ∂x∂u​=∂y∂v​,∂x∂v​=−∂y∂u​ (C-R条件) 

  1. 柯西-黎曼条件( C a u c h y − R i e m a n n Cauchy-Riemann Cauchy−Riemann条件)是函数可导的必要条件

    ∂ u ∂ x = ∂ v ∂ y , ∂ v ∂ x = − ∂ u ∂ y \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} ∂x∂u​=∂y∂v​,∂x∂v​=−∂y∂u​

  2. 复函数 f ( z ) = u + i v f(z)=u+i v f(z)=u+iv 在区域 D D D 内可导(解析) ⇔ \Leftrightarrow ⇔

    (1) u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在 D D D 内可微。

    (2) u 、 v u、v u、v满足 ∂ u ∂ x = ∂ v ∂ y , − ∂ u ∂ y = ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},-\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} \quad ∂x∂u​=∂y∂v​,−∂y∂u​=∂x∂v​ (满足 C − R C-R C−R 方程)

下一章节:解析函数/全纯函数

专栏目录:数学物理方法专栏目录

关注
打赏
1688896170
查看更多评论

力语

暂无认证

  • 5浏览

    0关注

    31博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.1045s