- 引言
- 回顾:策略梯度定理
- 确定性策略梯度
- 确定性策略梯度的表示形式
- 确定性策略梯度算法推导过程
上一节我们介绍了 行动者-评论家(AC)方法,其核心思想是将policy_based与value_based方法相结合,仅需要执行一次状态转移过程,就可立即进行策略改进。本节将继续沿用AC方法框架,介绍 确定性策略梯度定理。
回顾:策略梯度定理在策略梯度方法介绍——蒙特卡洛策略梯度方法(REINFORCE)介绍了策略梯度定理的期望表达形式: ∇ J ( θ ) = E S t ∼ ρ π θ ; A t ∼ π θ [ ∇ log π ( A t ∣ S t ; θ ) q π θ ( S t , A t ) ] \nabla \mathcal J(\theta) = \mathbb E_{S_t \sim \rho^{\pi_{\theta}};A_t \sim \pi_{\theta}}[\nabla \log \pi(A_t \mid S_t;\theta)q_{\pi_{\theta}}(S_t,A_t)] ∇J(θ)=ESt∼ρπθ;At∼πθ[∇logπ(At∣St;θ)qπθ(St,At)] 其中, t t t时刻状态 S t S_t St服从状态分布 ρ π θ \rho^{\pi_{\theta}} ρπθ, t t t时刻动作 A t A_t At服从 S t S_t St时刻的策略函数 π ( A t ∣ S t ; θ ) \pi(A_t \mid S_t;\theta) π(At∣St;θ)。
确定性策略梯度 确定性策略梯度的表示形式既然有确定型策略梯度,自然也会有随机性策略梯度。在策略梯度定理推导过程中介绍的就是随机性策略梯度的推导过程。两者之间主要的差别是 t t t时刻动作 A t A_t At服从的策略是确定性策略还是随机性策略。
在最早的马尔可夫奖励过程(MRP)中介绍到确定性策略—智能体在某一状态下只能执行唯一一个确定的动作。因此,在策略梯度方法中,策略 π ( A t ∣ S t ; θ ) \pi(A_t \mid S_t;\theta) π(At∣St;θ)是一个 常数,而常数自身是不存在梯度的,因此 ∇ π ( A t ∣ S t ; θ ) = 0 \nabla \pi(A_t \mid S_t;\theta) = 0 ∇π(At∣St;θ)=0;
为了在算法过程中,继续对参数 θ \theta θ求解梯度,对确定性策略设定一个符号: μ ( S t ; θ ) \mu(S_t;\theta) μ(St;θ),记为 μ θ \mu_{\theta} μθ。
- μ ( S t ; θ ) \mu(S_t;\theta) μ(St;θ)可看成是关于 S t S_t St和参数 θ \theta θ的函数,而不是条件概率;
- μ ( S t ; θ ) \mu(S_t;\theta) μ(St;θ)本身就可以表示动作 A t A_t At;
J ( θ ) \mathcal J(\theta) J(θ)仍然表示 μ θ \mu_{\theta} μθ条件下,初始状态的回报 G 0 G_0 G0的期望 E μ θ [ G 0 ] \mathbb E_{\mu_{\theta}}[G_0] Eμθ[G0]。因此,对确定性策略梯度 ∇ J ( θ ) \nabla \mathcal J(\theta) ∇J(θ)表示如下: ∇ J ( θ ) = ∇ E μ θ [ G 0 ] = E [ ∑ k = 0 + ∞ γ k ∇ μ ( S t ; θ ) [ ∇ a q μ θ ( S t , a ) ] ∣ a = μ ( S t ; θ ) ] \nabla \mathcal J(\theta) = \nabla \mathbb E_{\mu_{\theta}}[G_0] = \mathbb E \left[\sum_{k=0}^{+\infty}\gamma^k \nabla \mu(S_t;\theta)[\nabla_{a}q_{\mu_{\theta}}(S_t,a)]|_{a=\mu(S_t;\theta)} \right] ∇J(θ)=∇Eμθ[G0]=E[k=0∑+∞γk∇μ(St;θ)[∇aqμθ(St,a)]∣a=μ(St;θ)] 更一般的形式表示如下: ∇ J ( θ ) = E S t ∼ ρ μ θ [ ∇ μ ( S t ; θ ) ∇ a q μ θ ( S t , a ) ∣ a = μ ( S t ; θ ) ] \nabla \mathcal J(\theta) = \mathbb E_{S_t \sim \rho^{\mu_{\theta}}} \left[\nabla \mu(S_t;\theta) \nabla_{a}q_{\mu_{\theta}}(S_t,a) |_{a=\mu(S_t;\theta)}\right] ∇J(θ)=ESt∼ρμθ[∇μ(St;θ)∇aqμθ(St,a)∣a=μ(St;θ)]
和回顾中策略梯度定理中期望的表达形式对比,主要有如下几个区别:
- 期望结果中,分布只包含状态分布 S t ∼ ρ μ θ S_t \sim \rho^{\mu_{\theta}} St∼ρμθ;
- 期望内部,不仅要对 μ ( S t ; θ ) \mu(S_t;\theta) μ(St;θ)中的 θ \theta θ求解梯度,还要对状态-动作价值函数 q μ θ ( S t , a ) q_{\mu_{\theta}}(S_t,a) qμθ(St,a)中的 a a a求解梯度;
- 不存在 log \log log项;
带着上述的几个区别,执行确定性策略梯度的算法推导过程。
确定性策略梯度算法推导过程整个推导过程和‘策略梯度定理’推导过程非常相似,大家可以对比查看。
当策略函数
π
(
a
∣
s
;
θ
)
\pi(a \mid s;\theta)
π(a∣s;θ)成为确定性策略
μ
(
s
;
θ
)
\mu(s;\theta)
μ(s;θ)后,最主要的变化 是状态价值函数
V
μ
θ
(
s
)
V_{\mu_{\theta}}(s)
Vμθ(s)与状态-动作价值函数
q
μ
θ
(
s
,
μ
(
s
;
θ
)
)
q_{\mu_{\theta}}(s,\mu(s;\theta))
qμθ(s,μ(s;θ))相等: 动作被唯一确定了;
V
μ
θ
(
s
)
=
q
μ
θ
(
s
,
μ
(
s
;
θ
)
)
,
s
∈
S
V_{\mu_{\theta}}(s) = q_{\mu_{\theta}}(s,\mu(s;\theta)), s \in \mathcal S
Vμθ(s)=qμθ(s,μ(s;θ)),s∈S
根据贝尔曼期望方程,将
q
μ
θ
(
s
,
a
)
q_{\mu_{\theta}}(s,a)
qμθ(s,a)展开为如下形式:
r
(
s
,
μ
(
s
,
θ
)
)
r(s,\mu(s,\theta))
r(s,μ(s,θ))被称为奖赏函数。
q
μ
θ
(
s
,
μ
(
s
;
θ
)
)
=
r
(
s
,
μ
(
s
;
θ
)
)
+
γ
∑
s
′
,
r
P
(
s
′
,
r
∣
s
,
μ
(
s
;
θ
)
)
V
μ
θ
(
s
′
)
,
s
∈
S
q_{\mu_{\theta}}(s,\mu(s;\theta)) = r(s,\mu(s;\theta)) + \gamma \sum_{s',r}P(s',r \mid s,\mu(s;\theta))V_{\mu_{\theta}}(s'), s \in \mathcal S
qμθ(s,μ(s;θ))=r(s,μ(s;θ))+γs′,r∑P(s′,r∣s,μ(s;θ))Vμθ(s′),s∈S 继续化简,后一项的
r
r
r可以使用概率密度积分的方式消掉。整理得:
q
μ
θ
(
s
,
μ
(
s
;
θ
)
)
=
r
(
s
,
μ
(
s
,
θ
)
)
+
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
V
μ
θ
(
s
′
)
,
s
∈
S
q_{\mu_{\theta}}(s,\mu(s;\theta)) = r(s,\mu(s,\theta)) + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta))V_{\mu_{\theta}}(s'), s \in \mathcal S
qμθ(s,μ(s;θ))=r(s,μ(s,θ))+γs′∑P(s′∣s,μ(s;θ))Vμθ(s′),s∈S
分别对 V μ θ ( s ) , q μ θ ( s , μ ( s ; θ ) ) V_{\mu_{\theta}}(s),q_{\mu_{\theta}}(s,\mu(s;\theta)) Vμθ(s),qμθ(s,μ(s;θ))求解梯度: ∇ V μ θ ( s ) = ∇ q μ θ ( s , μ ( s ; θ ) ) \nabla V_{\mu_{\theta}}(s) = \nabla q_{\mu_{\theta}}(s,\mu(s;\theta)) ∇Vμθ(s)=∇qμθ(s,μ(s;θ)) 对 q μ θ ( s , μ ( s ; θ ) ) q_{\mu_{\theta}}(s,\mu(s;\theta)) qμθ(s,μ(s;θ))求解梯度过程中,由于对 θ \theta θ求解梯度,因此注意 链式求导法则 和 乘法求导: ∇ q μ θ ( s , μ ( s ; θ ) ) = ∇ a r ( s , a ) ∣ a = μ ( s ; θ ) ⋅ ∇ μ ( s ; θ ) + γ ∑ s ′ { ∇ a P ( s ′ ∣ s , a ) ∣ a = μ ( s ; θ ) ⋅ ∇ μ ( s ; θ ) ⋅ V μ θ ( s ′ ) + P ( s ′ ∣ s , μ ( s ; θ ) ) ⋅ ∇ V μ θ ( s ′ ) } \nabla q_{\mu_{\theta}}(s,\mu(s;\theta)) = \nabla_{a} r(s,a)|_{a=\mu(s;\theta)}\cdot\nabla\mu(s;\theta) + \gamma \sum_{s'}\left\{\nabla_{a} P(s' \mid s,a)|_{a = \mu(s;\theta)} \cdot \nabla \mu(s;\theta) \cdot V_{\mu_{\theta}}(s') + P(s' \mid s,\mu(s;\theta)) \cdot \nabla V_{\mu_{\theta}}(s') \right\} ∇qμθ(s,μ(s;θ))=∇ar(s,a)∣a=μ(s;θ)⋅∇μ(s;θ)+γs′∑{∇aP(s′∣s,a)∣a=μ(s;θ)⋅∇μ(s;θ)⋅Vμθ(s′)+P(s′∣s,μ(s;θ))⋅∇Vμθ(s′)} 将含有 ∇ μ ( s ; θ ) \nabla \mu(s;\theta) ∇μ(s;θ)的项提出来: ∇ μ ( s ; θ ) ⋅ [ ∇ a r ( s , a ) + γ ∑ s ′ ∇ a P ( s ′ ∣ s , a ) ⋅ V μ θ ( s ′ ) ] a = μ ( s ; θ ) + γ ∑ s ′ P ( s ′ ∣ s , μ ( s ; θ ) ) ⋅ ∇ V μ θ ( s ′ ) \nabla\mu(s;\theta) \cdot \left[\nabla_{a}r(s,a) + \gamma\sum_{s'}\nabla_{a}P(s' \mid s,a) \cdot V_{\mu_{\theta}}(s')\right]_{a=\mu(s;\theta)} + \gamma \sum_{s'}P(s'\mid s,\mu(s;\theta)) \cdot \nabla V_{\mu_{\theta}}(s') ∇μ(s;θ)⋅[∇ar(s,a)+γs′∑∇aP(s′∣s,a)⋅Vμθ(s′)]a=μ(s;θ)+γs′∑P(s′∣s,μ(s;θ))⋅∇Vμθ(s′) 又因为: ∇ a r ( s , a ) + γ ∑ s ′ ∇ a P ( s ′ ∣ s , a ) ⋅ V μ θ ( s ′ ) = ∇ a r ( s , a ) + ∇ a γ ∑ s ′ P ( s ′ ∣ s , a ) ⋅ V μ θ ( s ′ ) = ∇ a [ r ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) ⋅ V μ θ ( s ′ ) ] = ∇ a q μ θ ( s , a ) \begin{split} & \nabla_{a}r(s,a) + \gamma\sum_{s'}\nabla_{a}P(s' \mid s,a) \cdot V_{\mu_{\theta}}(s') \\ & = \nabla_{a} r(s,a) + \nabla_{a}\gamma\sum_{s'}P(s' \mid s,a) \cdot V_{\mu_{\theta}}(s') \\ & = \nabla_{a} \left[r(s,a) + \gamma\sum_{s'}P(s' \mid s,a) \cdot V_{\mu_{\theta}}(s')\right] \\ & = \nabla_{a}q_{\mu_{\theta}}(s,a) \\ \end{split} ∇ar(s,a)+γs′∑∇aP(s′∣s,a)⋅Vμθ(s′)=∇ar(s,a)+∇aγs′∑P(s′∣s,a)⋅Vμθ(s′)=∇a[r(s,a)+γs′∑P(s′∣s,a)⋅Vμθ(s′)]=∇aqμθ(s,a)
则有: ∇ q μ θ ( s , μ ( s ; θ ) ) = ∇ μ ( s ; θ ) ⋅ ∇ a q μ θ ( s , a ) ∣ a = μ ( s ; θ ) + γ ∑ s ′ P ( s ′ ∣ s , μ ( s ; θ ) ) ⋅ ∇ V μ θ ( s ′ ) \nabla q_{\mu_{\theta}}(s,\mu(s;\theta)) = \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \nabla V_{\mu_{\theta}}(s') ∇qμθ(s,μ(s;θ))=∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)+γs′∑P(s′∣s,μ(s;θ))⋅∇Vμθ(s′)
最终有: ∇ V μ θ ( s ) = ∇ μ ( s ; θ ) ⋅ ∇ a q μ θ ( s , a ) ∣ a = μ ( s ; θ ) + γ ∑ s ′ P ( s ′ ∣ s , μ ( s ; θ ) ) ⋅ ∇ V μ θ ( s ′ ) \nabla V_{\mu_{\theta}}(s) = \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \nabla V_{\mu_{\theta}}(s') ∇Vμθ(s)=∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)+γs′∑P(s′∣s,μ(s;θ))⋅∇Vμθ(s′) 至此,我们得到了 ∇ V μ θ ( s ) → ∇ V μ θ ( s ′ ) \nabla V_{\mu_{\theta}}(s) \to \nabla V_{\mu_{\theta}}(s') ∇Vμθ(s)→∇Vμθ(s′)的 递推关系。我们同样可以得到 ∇ V μ θ ( s ′ ) → ∇ V μ θ ( s ′ ′ ) \nabla V_{\mu_{\theta}}(s') \to \nabla V_{\mu_{\theta}}(s'') ∇Vμθ(s′)→∇Vμθ(s′′)的递推关系: ∇ V μ θ ( s ′ ) = ∇ μ ( s ′ ; θ ) ⋅ ∇ a ′ q μ θ ( s ′ , a ′ ) ∣ a ′ = μ ( s ′ ; θ ) + γ ∑ s ′ ′ P ( s ′ ′ ∣ s ′ , μ ( s ′ ; θ ) ) ⋅ ∇ V μ θ ( s ′ ′ ) \nabla V_{\mu_{\theta}}(s') = \nabla \mu(s';\theta) \cdot \nabla_{a'}q_{\mu_{\theta}}(s',a')|_{a' = \mu(s';\theta)} + \gamma \sum_{s''}P(s'' \mid s',\mu(s';\theta)) \cdot \nabla V_{\mu_{\theta}}(s'') ∇Vμθ(s′)=∇μ(s′;θ)⋅∇a′qμθ(s′,a′)∣a′=μ(s′;θ)+γs′′∑P(s′′∣s′,μ(s′;θ))⋅∇Vμθ(s′′)
将 ∇ V μ θ ( s ′ ) \nabla V_{\mu_{\theta}}(s') ∇Vμθ(s′)带回 ∇ V μ θ ( s ) \nabla V_{\mu_{\theta}}(s) ∇Vμθ(s): ∇ V μ θ ( s ) = ∇ μ ( s ; θ ) ⋅ ∇ a q μ θ ( s , a ) ∣ a = μ ( s ; θ ) + γ ∑ s ′ P ( s ′ ∣ s , μ ( s ; θ ) ) ⋅ { ∇ μ ( s ′ ; θ ) ⋅ ∇ a ′ q μ θ ( s ′ , a ′ ) ∣ a ′ = μ ( s ′ ; θ ) + γ ∑ s ′ ′ P ( s ′ ′ ∣ s ′ , μ ( s ′ ; θ ) ) ⋅ ∇ V μ θ ( s ′ ′ ) } \nabla V_{\mu_{\theta}}(s) = \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \left\{\nabla \mu(s';\theta) \cdot \nabla_{a'}q_{\mu_{\theta}}(s',a')|_{a' = \mu(s';\theta)} + \gamma \sum_{s''}P(s'' \mid s',\mu(s';\theta)) \cdot \nabla V_{\mu_{\theta}}(s'') \right\} ∇Vμθ(s)=∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)+γs′∑P(s′∣s,μ(s;θ))⋅{∇μ(s′;θ)⋅∇a′qμθ(s′,a′)∣a′=μ(s′;θ)+γs′′∑P(s′′∣s′,μ(s′;θ))⋅∇Vμθ(s′′)}
展开后依然是三项加和的形式:
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
′
;
θ
)
⋅
∇
a
′
q
μ
θ
(
s
′
,
a
′
)
∣
a
′
=
μ
(
s
′
;
θ
)
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
⋅
γ
∑
s
′
′
P
(
s
′
′
∣
s
′
,
μ
(
s
′
;
θ
)
)
⋅
∇
V
μ
θ
(
s
′
′
)
\nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} \\ \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \nabla \mu(s';\theta) \cdot \nabla_{a'}q_{\mu_{\theta}}(s',a')|_{a' = \mu(s';\theta)} \\ \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \gamma \sum_{s''}P(s'' \mid s',\mu(s';\theta)) \cdot \nabla V_{\mu_{\theta}}(s'')
∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)γs′∑P(s′∣s,μ(s;θ))⋅∇μ(s′;θ)⋅∇a′qμθ(s′,a′)∣a′=μ(s′;θ)γs′∑P(s′∣s,μ(s;θ))⋅γs′′∑P(s′′∣s′,μ(s′;θ))⋅∇Vμθ(s′′) 由于最后一项依然可以继续展开,因此我们先关注前面两项是否存在某种表达规律; 第一个式子,我们可以理解成 使用确定性策略
μ
(
s
;
θ
)
\mu(s;\theta)
μ(s;θ) 从状态
s
s
s经过动作
a
=
μ
(
s
;
θ
)
a=\mu(s;\theta)
a=μ(s;θ)执行0次状态转移至 状态
s
s
s的价值函数的 梯度。 状态
s
s
s转移至状态
s
→
s \to
s→相当于没有进行状态转移——静止不动 ,因此动态特性函数
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
=
1
P(s' \mid s,\mu(s;\theta))=1
P(s′∣s,μ(s;θ))=1恒成立。并且 转移后的状态结果只有
s
s
s自身。因此,可以将第一项式子扩展如下:
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
=
1
×
∑
s
1
×
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
=
γ
0
∑
s
P
(
s
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
\begin{split} & \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} \\ & = 1 \times \sum_{s} 1 \times \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} \\ & = \gamma^0 \sum_{s} P(s \mid s,\mu(s;\theta)) \cdot \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} \end{split}
∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)=1×s∑1×∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)=γ0s∑P(s∣s,μ(s;θ))⋅∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ) 再次将第一项与第二项进行对比:
γ
0
∑
s
P
(
s
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
′
;
θ
)
⋅
∇
a
′
q
μ
θ
(
s
′
,
a
′
)
∣
a
′
=
μ
(
s
′
;
θ
)
\gamma^0 \sum_{s} P(s \mid s,\mu(s;\theta)) \cdot \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)}\\ \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \nabla \mu(s';\theta) \cdot \nabla_{a'}q_{\mu_{\theta}}(s',a')|_{a' = \mu(s';\theta)}
γ0s∑P(s∣s,μ(s;θ))⋅∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)γs′∑P(s′∣s,μ(s;θ))⋅∇μ(s′;θ)⋅∇a′qμθ(s′,a′)∣a′=μ(s′;θ) 至此,找到规律: 如果状态
s
s
s执行了
N
N
N次状态转移后达到状态
s
(
N
)
s^{(N)}
s(N):
γ
N
∑
s
(
N
)
P
(
s
(
N
)
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
(
N
)
;
θ
)
⋅
∇
a
(
N
)
q
μ
θ
(
s
(
N
)
,
a
(
N
)
)
∣
a
(
N
)
=
μ
(
s
(
N
)
;
θ
)
\gamma^N \sum_{s^{(N)}} P(s^{(N)} \mid s,\mu(s;\theta)) \cdot \nabla \mu(s^{(N)};\theta) \cdot \nabla_{a^{(N)}}q_{\mu_{\theta}}(s^{(N)},a^{(N)})|_{a^{(N)} = \mu(s^{(N)};\theta)}
γNs(N)∑P(s(N)∣s,μ(s;θ))⋅∇μ(s(N);θ)⋅∇a(N)qμθ(s(N),a(N))∣a(N)=μ(s(N);θ) 因此,
∇
J
(
θ
)
=
∇
V
μ
θ
(
s
0
)
\nabla \mathcal J(\theta) = \nabla V_{\mu_{\theta}}(s_0)
∇J(θ)=∇Vμθ(s0)表示如下:
∇
J
(
θ
)
=
∇
V
μ
θ
(
s
0
)
=
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
+
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
V
μ
θ
(
s
′
)
=
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
+
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
′
;
θ
)
⋅
∇
a
′
q
μ
θ
(
s
′
,
a
′
)
∣
a
′
=
μ
(
s
′
;
θ
)
+
γ
∑
s
′
P
(
s
′
∣
s
,
μ
(
s
;
θ
)
)
⋅
γ
∑
s
′
′
P
(
s
′
′
∣
s
′
,
μ
(
s
′
;
θ
)
)
⋅
∇
V
μ
θ
(
s
′
′
)
=
⋯
=
∑
N
=
0
+
∞
γ
N
∑
s
(
N
)
P
(
s
(
N
)
∣
s
,
μ
(
s
;
θ
)
)
⋅
∇
μ
(
s
(
N
)
;
θ
)
⋅
∇
a
(
N
)
q
μ
θ
(
s
(
N
)
,
a
(
N
)
)
∣
a
(
N
)
=
μ
(
s
(
N
)
;
θ
)
\begin{aligned} \nabla \mathcal J(\theta) & = \nabla V_{\mu_{\theta}}(s_0) \\ & = \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \nabla V_{\mu_{\theta}}(s') \\ & = \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \nabla \mu(s';\theta) \cdot \nabla_{a'}q_{\mu_{\theta}}(s',a')|_{a' = \mu(s';\theta)} + \gamma \sum_{s'}P(s' \mid s,\mu(s;\theta)) \cdot \gamma \sum_{s''}P(s'' \mid s',\mu(s';\theta)) \cdot \nabla V_{\mu_{\theta}}(s'')\\ & = \cdots \\ & = \sum_{N=0}^{+\infty}\gamma^N \sum_{s^{(N)}} P(s^{(N)} \mid s,\mu(s;\theta)) \cdot \nabla \mu(s^{(N)};\theta) \cdot \nabla_{a^{(N)}}q_{\mu_{\theta}}(s^{(N)},a^{(N)})|_{a^{(N)} = \mu(s^{(N)};\theta)} \end{aligned}
∇J(θ)=∇Vμθ(s0)=∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)+γs′∑P(s′∣s,μ(s;θ))⋅∇Vμθ(s′)=∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)+γs′∑P(s′∣s,μ(s;θ))⋅∇μ(s′;θ)⋅∇a′qμθ(s′,a′)∣a′=μ(s′;θ)+γs′∑P(s′∣s,μ(s;θ))⋅γs′′∑P(s′′∣s′,μ(s′;θ))⋅∇Vμθ(s′′)=⋯=N=0∑+∞γNs(N)∑P(s(N)∣s,μ(s;θ))⋅∇μ(s(N);θ)⋅∇a(N)qμθ(s(N),a(N))∣a(N)=μ(s(N);θ) 同样可以引入状态分布,构建一个符号:
P
r
{
s
0
→
s
,
k
,
μ
}
P_r\{s_0 \to s,k,\mu\}
Pr{s0→s,k,μ}表示 从初始状态
s
0
s_0
s0开始,在确定性策略
μ
θ
\mu_{\theta}
μθ条件下,执行
k
k
k次状态转移后达到状态
s
s
s的概率:
P
r
{
s
0
→
s
,
k
,
μ
}
P_r\{s_0 \to s,k,\mu\}
Pr{s0→s,k,μ}符号产生过程 ->
传送门
V
μ
θ
(
s
)
=
∑
s
∈
S
∑
N
=
0
+
∞
γ
N
×
P
r
{
s
0
→
s
,
N
,
μ
}
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
=
∑
s
∈
S
γ
N
×
η
(
s
)
×
∇
μ
(
s
;
θ
)
⋅
∇
a
q
μ
θ
(
s
,
a
)
∣
a
=
μ
(
s
;
θ
)
\begin{aligned} V_{\mu_{\theta}}(s) & = \sum_{s \in \mathcal S}\sum_{N=0}^{+\infty} \gamma^N \times P_r\{s_0 \to s,N,\mu\} \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} \\ & = \sum_{s \in \mathcal S} \gamma^N \times \eta(s) \times \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} \end{aligned}
Vμθ(s)=s∈S∑N=0∑+∞γN×Pr{s0→s,N,μ}∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)=s∈S∑γN×η(s)×∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)
最终同样可以得到和策略梯度定理相似的如下表达: ∇ J ( θ ) ∝ ∑ s ∈ S μ ( s ) × ∇ μ ( s ; θ ) ⋅ ∇ a q μ θ ( s , a ) ∣ a = μ ( s ; θ ) \nabla \mathcal J(\theta) \propto \sum_{s \in \mathcal S}\mu(s) \times \nabla \mu(s;\theta) \cdot \nabla_{a}q_{\mu_{\theta}}(s,a)|_{a = \mu(s;\theta)} ∇J(θ)∝s∈S∑μ(s)×∇μ(s;θ)⋅∇aqμθ(s,a)∣a=μ(s;θ)
最终引入状态分布符号 S t ∼ ρ π θ S_t \sim \rho^{\pi_{\theta}} St∼ρπθ,将上述公式化简为期望形式: ∇ J ( θ ) = E S t ∼ ρ μ θ [ ∇ μ ( S t ; θ ) ∇ a q μ θ ( S t , a ) ∣ a = μ ( S t ; θ ) ] \nabla \mathcal J(\theta) = \mathbb E_{S_t \sim \rho^{\mu_{\theta}}} \left[\nabla \mu(S_t;\theta) \nabla_{a}q_{\mu_{\theta}}(S_t,a) |_{a=\mu(S_t;\theta)}\right] ∇J(θ)=ESt∼ρμθ[∇μ(St;θ)∇aqμθ(St,a)∣a=μ(St;θ)]
本质上,确定性策略梯度定理与策略梯度定理推导非常相似,只是推导初始存在差异。 由于 μ ( S t ; θ ) \mu(S_t;\theta) μ(St;θ)是确定性策略,因此不会对动作求解期望,从而不会像策略梯度定理一样通过除以 μ ( S t ; θ ) \mu(S_t;\theta) μ(St;θ)以获取 log \log log项。
相关参考: 深度强化学习原理、算法pytorch实战 —— 刘全,黄志刚编著 深度强化学习-确定性策略梯度算法推导