您当前的位置: 首页 > 

惊鸿一博

暂无认证

  • 3浏览

    0关注

    535博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

点云投影_激光点云变换到图像平面并保存成int16灰度图&一帧激光点云+一张RGB图像得到彩色点云

惊鸿一博 发布时间:2021-01-26 15:05:18 ,浏览量:3

目录

说明:

输入:

输出:

坐标系:

变换公式:

代码:

结果:

参考:

说明:
  • 将kitti数据集中 雷达点云图像投影到camera图像平面,
  • 并生成 深度图的灰度图(灰度值=深度x256 保存成int16位图像(kitti中 depth benchmark的做法))
输入:
  • P_rect_02: camera02相机内参
  • R_rect_00: 3x3 纠正旋转矩阵(使图像平面共面)(kitti特有的)

  • Tr_velo_to_cam: 激光雷达到camera00的变换矩阵
输出:
  • 投影图
  • 深度图的灰度图
坐标系:

变换公式:

以下等式说明了如何使用齐次坐标在相机0的图像平面上将空间中的3D激光雷达点X投影到2D像素点Y(使用Kitti自述文件中的表示法):

  • RT_velo_to_cam * x :是将Velodyne坐标中的点x投影到编号为0的相机(参考相机)坐标系中
  • R_rect00 *RT_velo_to_cam * x :是将Velodyne坐标中的点x投影到编号为0的相机(参考相机)坐标系中, 再以参考相机0为基础进行图像共面对齐修正(这是使用KITTI数据集的进行3D投影的必要操作)
  • P_rect_00 * R_rect00 *RT_velo_to_cam * x :是将Velodyne坐标中的点x投影到编号为0的相机(参考相机)坐标系中, 再进行图像共面对齐修正, 然后投影到相机0的像素坐标系中. 如果将P_rect_00改成P_rect_2, 也就是从参考相机0投影到相机2的像素坐标系中(其他相机相对与相机0有偏移b(i)).
  • 原始论文: Vision meets Robotics: The KITTI Dataset
代码:
# -*- coding: utf-8 -*-

#  数据来源: calib_cam_to_cam.txt 
#  下载链接: http://www.cvlibs.net/datasets/kitti/raw_data.php?type=road  >  2011_10_03_drive_0047  >  [calibration]
# R_rect_00: 9.999454e-01 7.259129e-03 -7.519551e-03 -7.292213e-03 9.999638e-01 -4.381729e-03 7.487471e-03 4.436324e-03 9.999621e-01
## P_rect_00: 7.188560e+02 0.000000e+00 6.071928e+02 0.000000e+00 0.000000e+00 7.188560e+02 1.852157e+02 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00
# ...
## R_rect_02: 9.999191e-01 1.228161e-02 -3.316013e-03 -1.228209e-02 9.999246e-01 -1.245511e-04 3.314233e-03 1.652686e-04 9.999945e-01
# P_rect_02: 7.188560e+02 0.000000e+00 6.071928e+02 4.538225e+01 0.000000e+00 7.188560e+02 1.852157e+02 -1.130887e-01 0.000000e+00 0.000000e+00 1.000000e+00 3.779761e-03

#  数据来源: calib_velo_to_cam.txt
#  下载链接: http://www.cvlibs.net/datasets/kitti/raw_data.php?type=road  >  2011_10_03_drive_0047  >  [calibration]
#   calib_time: 15-Mar-2012 11:45:23
#   R: 7.967514e-03 -9.999679e-01 -8.462264e-04 -2.771053e-03 8.241710e-04 -9.999958e-01 9.999644e-01 7.969825e-03 -2.764397e-03
#   T: -1.377769e-02 -5.542117e-02 -2.918589e-01


# # png bin来源
# data_odometry_color/dataset/sequences/00/image_2
# data_odometry_velodyne/dataset/sequences/00/velodyne

import sys
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import utils
from PIL import Image
import math


#-----------------------------------相机02内参矩阵-----------------------------------
P_rect_02 = np.array( [ 7.188560000000e+02, 0.000000000000e+00, 6.071928000000e+02, 4.538225000000e+01, 
                        0.000000000000e+00,7.188560000000e+02, 1.852157000000e+02, -1.130887000000e-01,
                        0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 3.779761000000e-03]).reshape((3,4))

R_rect_00 = np.array( [ 9.999454e-01, 7.259129e-03, -7.519551e-03,
                        -7.292213e-03, 9.999638e-01, -4.381729e-03, 
                        7.487471e-03, 4.436324e-03, 9.999621e-01]).reshape((3,3))

# R_rect_02 = np.array( [ 9.999191e-01, 1.228161e-02 -3,.316013e-03,
#                         -1.228209e-02, 9.999246e-01, -1.245511e-04, 
#                         3.314233e-03, 1.652686e-04, 9.999945e-01]).reshape((3,3))


#velo激光雷达 到 相机00(此处已知条件重点注意) 的变换矩阵
Tr_velo_to_cam = np.array( [    7.967514e-03, -9.999679e-01, -8.462264e-04, -1.377769e-02,
                                -2.771053e-03, 8.241710e-04, -9.999958e-01, -5.542117e-02,
                                9.999644e-01, 7.969825e-03, -2.764397e-03, -2.918589e-01]).reshape((3,4))    


#-----------------------------------数据文件位置---------------------------------------
velo_files = "./data/00_velodyne/000005.bin"
rgbimg = "./data/00_image_02/000005.png"
resultImg = "./data/result_merge.png"

data = {}
data['P_rect_20'] = P_rect_02
# Compute the velodyne to rectified camera coordinate transforms
data['T_cam0_velo'] = Tr_velo_to_cam
data['T_cam0_velo'] = np.vstack([data['T_cam0_velo'], [0, 0, 0, 1]])

# pattern1:
R_rect_00 = np.insert(R_rect_00,3,values=[0,0,0],axis=0)
R_rect_00 = np.insert(R_rect_00,3,values=[0,0,0,1],axis=1)
data['T_cam2_velo'] = R_rect_00.dot(data['T_cam0_velo']) #雷达 到 相机02的变换矩阵
print(data['T_cam2_velo'])

pointCloud = utils.load_velo_scan(velo_files)   #读取lidar原始数据
points = pointCloud[:, 0:3]                                           # 获取 lidar xyz (front, left, up)
points_homo = np.insert(points,3,1,axis=1).T    # 齐次化,并转置(一列表示一个点(x,y,z,1), 多少列就有多少个点)
points_homo = np.delete(points_homo,np.where(points_homo[0,:]            
关注
打赏
1663399408
查看更多评论
0.0401s