相关地址信息
Prometheus github 地址:https://github.com/coreos/kube-prometheus
一、组件说明 1.MetricServer:
是kubernetes集群资源使用情况的聚合器,收集数据给kubernetes集群内使用,如kubectl,hpa,scheduler等。
2.PrometheusOperator:是一个系统监测和警报工具箱,用来存储监控数据。
3.NodeExporter:用于各node的关键度量指标状态数据。
4.KubeStateMetrics:收集kubernetes集群内资源对象数据,制定告警规则。
5.Prometheus:采用pull方式收集apiserver,scheduler,controller-manager,kubelet组件数据,通过http协议传输。
6.Grafana:是可视化数据统计和监控平台。
二、构建记录 1. 下载
git clone https://github.com/coreos/kube-prometheus.git
cd /root/kube-prometheus/manifests
2. 修改 grafana-service.yaml 文件,使用 nodepode 方式访问 grafana:
vim grafana-service.yaml
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: monitoring
spec:
type: NodePort #添加内容
ports:
- name: http
port: 3000
targetPort: http
nodePort: 30100 #添加内容
selector:
app: grafana
3. 修改 prometheus-service.yaml,改为 nodepode
vim prometheus-service.yaml
apiVersion: v1
kind: Service
metadata:
labels:
prometheus: k8s
name: prometheus-k8s
namespace: monitoring
spec:
type: NodePort
ports:
- name: web
port: 9090
targetPort: web
nodePort: 30200
selector:
app: prometheus
prometheus: k8s
4. 修改 alertmanager-service.yaml,改为 nodepode
vim alertmanager-service.yaml
apiVersion: v1
kind: Service
metadata:
labels:
alertmanager: main
name: alertmanager-main
namespace: monitoring
spec:
type: NodePort
ports:
- name: web
port: 9093
targetPort: web
nodePort: 30300
selector:
alertmanager: main
app: alertmanager
多运行几次,因为需要互相链接
三、Horizontal Pod Autoscaling
Horizontal Pod Autoscaling 可以根据 CPU 利用率自动伸缩一个 Replication Controller、Deployment 或者Replica Set 中的 Pod 数量
kubectl run php-apache --image=gcr.io/google_containers/hpa-example --requests=cpu=200m --expose --port=80
创建 HPA 控制器 - 相关算法的详情请参阅这篇文档
kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10
关闭压测
增加负载,查看负载节点数目
$ kubectl run -i --tty load-generator --image=busybox /bin/sh
$ while true; do wget -q -O- http://php-apache.default.svc.cluster.local; done
四、资源限制 - Pod
Kubernetes 对资源的限制实际上是通过 cgroup 来控制的,cgroup 是容器的一组用来控制内核如何运行进程的相关属性集合。针对内存、CPU 和各种设备都有对应的 cgroup
默认情况下,Pod 运行没有 CPU 和内存的限额。 这意味着系统中的任何 Pod 将能够像执行该 Pod 所在的节点一样,消耗足够多的 CPU 和内存 。一般会针对某些应用的 pod 资源进行资源限制,这个资源限制是通过resources 的 requests 和 limits 来实现
spec:
containers:
- image: xxxx
imagePullPolicy: Always
name: auth
ports:
- containerPort: 8080
protocol: TCP
resources:
limits:
cpu: "4"
memory: 2Gi
requests:
cpu: 250m
memory: 250Mi
requests 要分分配的资源,limits 为最高请求的资源值。可以简单理解为初始值和最大值
五、资源限制 - 名称空间 Ⅰ、计算资源配额
apiVersion: v1
kind: ResourceQuota
metadata:
name: compute-resources
namespace: spark-cluster
spec:
hard:
pods: "20"
requests.cpu: "20"
requests.memory: 100Gi
limits.cpu: "40"
limits.memory: 200Gi
Ⅱ、配置对象数量配额限制
apiVersion: v1
kind: ResourceQuota
metadata:
name: object-counts
namespace: spark-cluster
spec:
hard:
configmaps: "10"
persistentvolumeclaims: "4"
replicationcontrollers: "20"
secrets: "10"
services: "10"
services.loadbalancers: "2"
Ⅲ、配置 CPU 和 内存 LimitRange
apiVersion: v1
kind: LimitRange
metadata:
name: mem-limit-range
spec:
limits:
- default:
memory: 50Gi
cpu: 5
defaultRequest:
memory: 1Gi
cpu: 1
type: Container
default 即 limit 的值
defaultRequest 即 request 的值
六、访问 prometheus 1. prometheus 对应的 nodeport 端口为 30200,访问 http://MasterIP:30200
通过访问 http://MasterIP:30200/target 可以看到 prometheus 已经成功连接上了 k8s 的 apiserver
查看 service-discovery
Prometheus 自己的指标
prometheus 的 WEB 界面上提供了基本的查询 K8S 集群中每个 POD 的 CPU 使用情况,查询条件如下:
sum by (pod_name)( rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m] ) )
上述的查询有出现数据,说明 node-exporter 往 prometheus 中写入数据正常,接下来我们就可以部署grafana 组件,实现更友好的 webui 展示数据了
七、访问 grafana
查看 grafana 服务暴露的端口号:
kubectl get service -n monitoring | grep grafana
grafana NodePort 10.107.56.143 3000:30100/TCP 20h
如上可以看到 grafana 的端口号是 30100,浏览器访问 http://MasterIP:30100 用户名密码默认 admin/admin
修改密码并登陆
添加数据源 grafana 默认已经添加了 Prometheus 数据源,grafana 支持多种时序数据源,每种数据源都有各自的查询编辑器
Prometheus 数据源的相关参数:
目前官方支持了如下几种数据源:
内容来自https://study.163.com/course/courseMain.htm?courseId=1209568805