您当前的位置: 首页 > 

mutourend

暂无认证

  • 2浏览

    0关注

    661博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

dalek-Curve25519 avx2并行计算学习笔记

mutourend 发布时间:2019-09-02 14:59:51 ,浏览量:2

1. 引言

Curve25519 Field Element在有限域 2 255 − 19 2^{255}-19 2255−19域内,采用64bit 串行计算时,采用的是5个FieldElement51元素来表示一个Element;若采用32-bit AVX2并行计算,则每个Element由10个FieldElement2526元素来表示。 即对于某Curve25519 Field Element a,对应的32-bit AVX2表示为(其中 若   i % 2 = = 0 ,   a i < 2 26 < 2 32 ; e l s e   a i < 2 25 < 2 32 若\ i\%2==0,\ a_i<2^{26}<2^{32}; else\ a_i<2^{25}<2^{32} 若 i%2==0, ai​> 25; z[9] = z[9] & LOW_25_BITS; let mut c0: u64x4 = c & LOW_26_BITS; // c0 < 2^26; let mut c1: u64x4 = c >> 26; // c1 < 2^(39-26) = 2^13; unsafe { use core::arch::x86_64::_mm256_mul_epu32; let x19 = u64x4::splat(19); c0 = _mm256_mul_epu32(c0.into_bits(), x19.into_bits()).into_bits(); // c0 < 2^30.25 c1 = _mm256_mul_epu32(c1.into_bits(), x19.into_bits()).into_bits(); // c1 < 2^17.25 } z[0] = z[0] + c0; // z0 < 2^26 + 2^30.25 < 2^30.33 z[1] = z[1] + c1; // z1 < 2^25 + 2^17.25 < 2^25.0067 carry(&mut z, 0); // z0 < 2^26, z1 < 2^25.0067 + 2^4.33 = 2^25.007 // The output coefficients are bounded with // // b = 0.007 for z[1] // b = 0.0004 for z[5] // b = 0 for other z[i]. // // So the packed result is bounded with b = 0.007. FieldElement2625x4([ repack_pair(z[0].into_bits(), z[1].into_bits()), repack_pair(z[2].into_bits(), z[3].into_bits()), repack_pair(z[4].into_bits(), z[5].into_bits()), repack_pair(z[6].into_bits(), z[7].into_bits()), repack_pair(z[8].into_bits(), z[9].into_bits()), ]) } 2. vector (a,b,c,d)表示

根据博客CPU指令集——AVX2第四节内容有: 在这里插入图片描述 在这里插入图片描述在这里插入图片描述 所以有: 在这里插入图片描述 对于4 field elements vector ( a , b , c , d ) (a,b,c,d) (a,b,c,d)可以 [ u 32 × 8 ; 5 ] [u32\times8;5] [u32×8;5]数组(以little-endian形式)来表示: ( a 0 , b 0 , a 1 , b 1 , c 0 , d 0 , c 1 , d 1 ) (a_0,b_0,a_1,b_1,c_0,d_0,c_1,d_1) (a0​,b0​,a1​,b1​,c0​,d0​,c1​,d1​) ( a 2 , b 2 , a 3 , b 3 , c 2 , d 2 , c 3 , d 3 ) (a_2,b_2,a_3,b_3,c_2,d_2,c_3,d_3) (a2​,b2​,a3​,b3​,c2​,d2​,c3​,d3​) ( a 4 , b 4 , a 5 , b 5 , c 4 , d 4 , c 5 , d 5 ) (a_4,b_4,a_5,b_5,c_4,d_4,c_5,d_5) (a4​,b4​,a5​,b5​,c4​,d4​,c5​,d5​) ( a 6 , b 6 , a 7 , b 7 , c 6 , d 6 , c 7 , d 7 ) (a_6,b_6,a_7,b_7,c_6,d_6,c_7,d_7) (a6​,b6​,a7​,b7​,c6​,d6​,c7​,d7​) ( a 8 , b 8 , a 9 , b 9 , c 8 , d 8 , c 9 , d 9 ) (a_8,b_8,a_9,b_9,c_8,d_8,c_9,d_9) (a8​,b8​,a9​,b9​,c8​,d8​,c9​,d9​)

亦即对于4 field elements vector ( a , b , c , d ) (a,b,c,d) (a,b,c,d),可以FieldElement2625x4表示为:

/// A vector of four field elements.
///
/// Each operation on a `FieldElement2625x4` has documented effects on
/// the bounds of the coefficients.  This API is designed for speed
/// and not safety; it is the caller's responsibility to ensure that
/// the post-conditions of one operation are compatible with the
/// pre-conditions of the next.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement2625x4(pub(crate) [u32x8; 5]);

根据FieldElement2625x4与vector ( a , b , c , d ) (a,b,c,d) (a,b,c,d)之间的相互转换需借助unpack_pair函数和repack_pair函数:

/// Unpack 32-bit lanes into 64-bit lanes:
/// ```ascii,no_run
/// (a0, b0, a1, b1, c0, d0, c1, d1)
/// ```
/// into
/// ```ascii,no_run
/// (a0, 0, b0, 0, c0, 0, d0, 0)
/// (a1, 0, b1, 0, c1, 0, d1, 0)
/// ```
#[inline(always)]
fn unpack_pair(src: u32x8) -> (u32x8, u32x8) {
    let a: u32x8;
    let b: u32x8;
    let zero = i32x8::new(0, 0, 0, 0, 0, 0, 0, 0);
    unsafe {
        use core::arch::x86_64::_mm256_unpackhi_epi32;
        use core::arch::x86_64::_mm256_unpacklo_epi32;
        a = _mm256_unpacklo_epi32(src.into_bits(), zero.into_bits()).into_bits();
        b = _mm256_unpackhi_epi32(src.into_bits(), zero.into_bits()).into_bits();
    }
    (a, b)
}
/// Repack 64-bit lanes into 32-bit lanes:
/// ```ascii,no_run
/// (a0, 0, b0, 0, c0, 0, d0, 0)
/// (a1, 0, b1, 0, c1, 0, d1, 0)
/// ```
/// into
/// ```ascii,no_run
/// (a0, b0, a1, b1, c0, d0, c1, d1)
/// ```
#[inline(always)]
fn repack_pair(x: u32x8, y: u32x8) -> u32x8 {
    unsafe {
        use core::arch::x86_64::_mm256_blend_epi32;
        use core::arch::x86_64::_mm256_shuffle_epi32;

        // Input: x = (a0, 0, b0, 0, c0, 0, d0, 0)
        // Input: y = (a1, 0, b1, 0, c1, 0, d1, 0)

        let x_shuffled = _mm256_shuffle_epi32(x.into_bits(), 0b11_01_10_00);
        let y_shuffled = _mm256_shuffle_epi32(y.into_bits(), 0b10_00_11_01);

        // x' = (a0, b0,  0,  0, c0, d0,  0,  0)
        // y' = ( 0,  0, a1, b1,  0,  0, c1, d1)

        return _mm256_blend_epi32(x_shuffled, y_shuffled, 0b11001100).into_bits();
    }
}
3. 对于Extend twisted坐标系表示的点 ( X 1 , Y 1 , Z 1 , T 1 ) (X_1,Y_1,Z_1,T_1) (X1​,Y1​,Z1​,T1​)的double/add运算

根据论文《Twisted Edwards Curves Revisited》中有相应的串行和并行运算算法: 在这里插入图片描述 在这里插入图片描述

3.1 对于Extend twisted坐标系表示的点 ( X 1 , Y 1 , Z 1 , T 1 ) (X_1,Y_1,Z_1,T_1) (X1​,Y1​,Z1​,T1​)的double运算

double算法与实际代码实现中的映射关系为: R 6 = R 2 + R 3 = S 1 + S 2 = S 5 R_6=R_2+R_3=S_1+S_2=S_5 R6​=R2​+R3​=S1​+S2​=S5​ R 7 = R 2 − R 3 = S 1 − S 2 = S 6 R_7=R_2-R_3=S_1-S_2=S_6 R7​=R2​−R3​=S1​−S2​=S6​ R 1 = R 4 + R 7 = 2 S 3 + S 1 − S 2 = S 8 R_1=R_4+R_7=2S_3+S_1-S_2=S_8 R1​=R4​+R7​=2S3​+S1​−S2​=S8​ R 2 = R 6 − R 5 = S 1 + S 2 − S 4 = S 9 R_2=R_6-R_5=S_1+S_2-S_4=S_9 R2​=R6​−R5​=S1​+S2​−S4​=S9​ 对应地有: ( S 9 , 0 , S 6 , 0 , S 6 , 0 , S 9 , 0 )   v p m u l u d q   ( S 8 , 0 , S 5 , 0 , S 8 , 0 , S 5 , 0 ) = ( S 8 ∗ S 9 , S 6 ∗ S 5 , S 6 ∗ S 8 , S 9 ∗ S 5 ) = ( X 3 , Y 3 , Z 3 , T 3 ) (S_9,0,S_6,0,S_6,0,S_9,0)\ vpmuludq\ (S_8,0,S_5,0,S_8,0,S_5,0)=(S_8*S_9,S_6*S_5,S_6*S_8,S_9*S_5)=(X_3,Y_3,Z_3,T_3) (S9​,0,S6​,0,S6​,0,S9​,0) vpmuludq (S8​,0,S5​,0,S8​,0,S5​,0)=(S8​∗S9​,S6​∗S5​,S6​∗S8​,S9​∗S5​)=(X3​,Y3​,Z3​,T3​)

根据博客curve25519-dalek中field reduce原理分析可知,radix为25.5时有: ∵ 2 255 ∗ x 10 ≡ 19 m o d ( 2 255 − 19 ) , w h e n   x = 1. \because 2^{255}*x^{10} \equiv 19 \quad mod \quad (2^{255}-19), when\ x=1. ∵2255∗x10≡19mod(2255−19),when x=1. 以及博客Curve25519 Field域2^255-19内的快速运算,以radix-25.5为例,符合avx2并行计算的设计。对于一个FieldElement,可表示为: f = f 0 + f 1 2 26 x + f 2 2 51 x 2 + f 3 2 77 x 3 + f 4 2 102 x 4 + f 5 2 128 x 5 + f 6 2 153 x 6 + f 7 2 179 x 7 + f 8 2 204 x 8 + f 9 2 230 x 9 f=f_0+f_12^{26}x+f_22^{51}x^2+f_32^{77}x^3+f_42^{102}x^4+f_52^{128}x^5+f_62^{153}x^6+f_72^{179}x^7+f_82^{204}x^8+f_92^{230}x^9 f=f0​+f1​226x+f2​251x2+f3​277x3+f4​2102x4+f5​2128x5+f6​2153x6+f7​2179x7+f8​2204x8+f9​2230x9 g = g 0 + g 1 2 26 x + g 2 2 51 x 2 + g 3 2 77 x 3 + g 4 2 102 x 4 + g 5 2 128 x 5 + g 6 2 153 x 6 + g 7 2 179 x 7 + g 8 2 204 x 8 + g 9 2 230 x 9 g=g_0+g_12^{26}x+g_22^{51}x^2+g_32^{77}x^3+g_42^{102}x^4+g_52^{128}x^5+g_62^{153}x^6+g_72^{179}x^7+g_82^{204}x^8+g_92^{230}x^9 g=g0​+g1​226x+g2​251x2+g3​277x3+g4​2102x4+g5​2128x5+g6​2153x6+g7​2179x7+g8​2204x8+g9​2230x9 根据论文《Sandy2x: New Curve25519 Speed Records》有: 在这里插入图片描述

3.2 对于Extend twisted坐标系表示的点 ( X 1 , Y 1 , Z 1 , T 1 ) , ( X 2 , Y 2 , Z 2 , T 2 ) (X_1,Y_1,Z_1,T_1),(X_2,Y_2,Z_2,T_2) (X1​,Y1​,Z1​,T1​),(X2​,Y2​,Z2​,T2​)的add运算

论文《Twisted Edwards Curves Revisited》并行运算算法设计运行在不同的处理器上,实际软件实现并不可行,因为不同处理器之间的同步效率导致的延时不可接受。(The reason may be that HWCD08 describe their formulas as operating on four independent processors, which would make a software implementation impractical: all of the operations are too low-latency to effectively synchronize.) 在这里插入图片描述 https://doc-internal.dalek.rs/curve25519_dalek/backend/vector/index.html中对以上算法进行了进一步梳理: 在这里插入图片描述 其中的MS分别表示乘法和平方运算,D表示与曲线系数的乘法运算,如上图的 k = 2 d k=2d k=2d。对于Curve25519的曲线表示为: − x 2 + y 2 = 1 + d x 2 y 2 , d = − ( 121665 / 121666 ) , q = 2 255 − 19 -x^2+y^2=1+dx^2y^2, d=-(121665/121666),q=2^{255}-19 −x2+y2=1+dx2y2,d=−(121665/121666),q=2255−19。 其中的MS具有很好的一致性,适于扩展至vector并行计算。 k = 2 d k=2d k=2d也可转换为以4个元素的vector表示: k = 2 d = k 0 + 2 n k 1 + 2 2 n k 2 + 2 3 n k 3 k=2d=k_0+2^nk_1+2^{2n}k_2+2^{3n}k_3 k=2d=k0​+2nk1​+22nk2​+23nk3​,这样就可以直接并行计算 k i ∗ R 7 k_i*R_7 ki​∗R7​。 当 d = d 1 d 2 = − 121665 121666 d=\frac{d_1}{d_2}=\frac{-121665}{121666} d=d2​d1​​=121666−121665​时,以下坐标表示等价: ( R 5 , R 6 , 2 d 1 d 2 R 7 , 2 R 8 ) ← ( d 2 R 5 , d 2 R 6 , 2 d 1 R 7 , 2 d 2 R 8 ) (R_5,R_6,2\frac{d_1}{d_2}R_7,2R_8)\leftarrow(d_2R_5,d_2R_6,2d_1R_7,2d_2R_8) (R5​,R6​,2d2​d1​​R7​,2R8​)←(d2​R5​,d2​R6​,2d1​R7​,2d2​R8​)

由此可知,上述的D运算也可转换为与 ( 121666 , 121666 , 2 ∗ 121665 , 2 ∗ 121666 ) (121666,121666,2*121665,2*121666) (121666,121666,2∗121665,2∗121666)(注意其中的 2 ∗ 121666 < 2 18 2*121666<2^{18} 2∗121666

关注
打赏
1664532908
查看更多评论
立即登录/注册

微信扫码登录

0.0465s