您当前的位置: 首页 > 

mutourend

暂无认证

  • 1浏览

    0关注

    661博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

可验证延迟函数(VDF)

mutourend 发布时间:2019-12-16 16:24:48 ,浏览量:1

可验证延迟函数(Verifiable Delay Function, VDF): VDF 这个概念最初由斯坦福大学密码学教授 Dan Boneh 等人在2018年论文《Verifiable Delay Functions》中给出。该篇文章于 2018 年发表在密码学顶级会议之一的 CRYPTO 上。

目前的VDF算法复杂度较高,离实用仍有差距。

https://github.com/Chia-Network/vdf-competition/中有对VDF的实现进行了竞赛。

[研究]可验证延迟函数(VDF)(一)一文搞懂VDF中有很详细的介绍。

https://github.com/cambrian/accumulator/blob/master/src/group/class.rs中有对https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf的class group 做实现。

VDF是串行运算算法,执行时间可预知,且无法通过并行来加速。通过VDF生成的证明可被快速verify。 目前知名的不可并行的串行运算为:对未知order的group进行repeated squaring。 The unknown order requirement is due to the divisibility of the order of a finite group by the order of any element in the group; if the group order is known then the repeated squaring operation could be reduced modulo the order of the group, shortcutting the computation.

在VDF中:

  • 若使用RSA group,则需要trusted setup,并保证生成后的有毒垃圾被即时清理,否则VDF的sequentiality requirement将broken。
  • 若使用class group of binary quadratic form将不需要trusted setup。因为其order为一个负素数判别式 d d d,当 ∣ d ∣ ≡ 3   m o d   4 |d|\equiv 3\ mod\ 4 ∣d∣≡3 mod 4时,is believed to be difficult to compute when d d d is sufficiently large, making the order of the class group effectively unknown. Therefore, a suitable discriminant ——and its associated class group —— can be chosen without the need for a trusted setup, which is a major advantage for using class groups in applications requiring groups of unknown order.
1. Binary quadratic form

f ( x , y ) = a x 2 + b x y + c y 2 f(x,y)=ax^2+bxy+cy^2 f(x,y)=ax2+bxy+cy2, where a , b , c ∈ R a,b,c\in R a,b,c∈R and a ! = 0 , b ! = 0 , c ! = 0 a!=0, b!=0,c!=0 a!=0,b!=0,c!=0。 f = ( a , b , c ) f=(a,b,c) f=(a,b,c)可称为a form。 若 f = ( a , b , c ) f=(a,b,c) f=(a,b,c), where a , b , c ∈ Z a,b,c\in Z a,b,c∈Z and a ! = 0 , b ! = 0 , c ! = 0 a!=0, b!=0,c!=0 a!=0,b!=0,c!=0,则 f 称为integral form。 c o n f ( f ) = g c d ( a , b , c ) conf(f)=gcd(a,b,c) conf(f)=gcd(a,b,c)称为content of a form。 若 c o n f ( f ) = 1 conf(f)=1 conf(f)=1,则form f称为primitive。 discriminant of form f为: Δ ( f ) = b 2 − 4 a c \Delta(f)=b^2-4ac Δ(f)=b2−4ac。 若 − a < b ≤ a -a

关注
打赏
1664532908
查看更多评论
立即登录/注册

微信扫码登录

0.0431s