Benedikt Bünz 等人(standford,ethereum,berkeley) 2019年论文《Proofs for Inner Pairing Products and Applications》。
视频介绍:(2020年3月31日) https://www.youtube.com/watch?v=oYdkGIoHKt0
代码实现:
- https://github.com/scipr-lab/ripp【本文重点解析本代码库】
-
https://github.com/qope/SIPP(Rust,基于Plonky2和Starky的BN254 pairing以及 ecdsa):在M1 MacBookPro(2021)机器上运行cargo test test_sipp_circuit -r -- --nocapture,基本性能为:【排除circuit building时间,做128个pairing聚合用时约145秒。】
Aggregating 128 pairings into 1 Start: cirucit build End: circuit build. took 35.545641375s Start: proof generation End: proof generation. took 145.043526708s
注意该代码使用rust stable版本,且低版本可能会报错,建议升级到最新的stable版本:
rustup install stable
代码总体基本结构为:
-
examples:scaling-ipp.rs,执行方式可为cargo run --release --example scaling-ipp 10 20 .
-
plot:ipp-scaling.gnuplot为gnuplot脚本,使用examples/scaling-ipp 输出的*.csv作图。
-
src:主源代码。 – rng.rs:主要实现FiatShamirRng,基于Fiat-Shamir来实现non-interactive proof。【注意,与Merlin实现Fiat-Shamir transform方案有所不同,Merlin transcript是基于STROBE的 封装。Strobe的主要涉及原则为:在任意阶段的密码学输出,除依赖于密钥外,还依赖于之前所有的输入。strobe主要采用对称加密方案,更侧重于简单和安全,而不是速度;noise协议采用非对称加密方案,已在WhatsAPP上落地应用。】(详细参加博客 Merlin——零知识证明(1)理论篇 和博客 strobe——面向IoT物联网应用的密码学协议框架)
/// A `SeedableRng` that refreshes its seed by hashing together the previous seed /// and the new seed material. // TODO: later: re-evaluate decision about ChaChaRng pub struct FiatShamirRng{ r: ChaChaRng, seed: GenericArray, #[doc(hidden)] digest: PhantomData, }
– lib.rs:实现了论文《Proofs for Inner Pairing Products and Applications》中的SIPP协议。
2. 主要依赖参见https://github.com/scipr-lab/ripp/blob/master/Cargo.toml中内容,分为[dependencies]和[dev-dependencies],两者的异同点有:
- [dev-dependencies]段落的格式等同于[dependencies]段落,
- 不同之处在于,[dependencies]段落声明的依赖用于构建软件包,
- 而[dev-dependencies]段落声明的依赖仅用于构建测试和性能评估。
- 此外,[dev-dependencies]段落声明的依赖不会传递给其他依赖本软件包的项目
[dependencies]依赖主要有:
- algebra-core = { git = “https://github.com/scipr-lab/zexe”, features = [ “parallel” ] }:为Rust crate that provides generic arithmetic for finite fields and elliptic curves。其中featuresparallel = [ "std", "rayon" ]。
- rayon:为data-parallelism Rust库。非常轻量,很容易convert a sequential computation into a parallel one。(具体可参加博客 Rayon: data parallelism in Rust)
// sequential iterator let total_price = stores.iter() .map(|store| store.compute_price(&list)) .sum(); // parallel iterator let total_price = stores.par_iter() .map(|store| store.compute_price(&list)) .sum();
- rand_core:主要用于实现the core trait:RngCore。
- rand_chacha:为使用ChaCha算法实现的密码学安全的随机数生成器。
- digest:为https://github.com/RustCrypto/traits中的digest算法。
[dev-dependencies]依赖主要有:
- blake2:BLAKE2 hash function family库。
- rand:provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
- csv:A fast and flexible CSV reader and writer for Rust, with support for Serde.
- serde = { version = “1”, features = [ “derive” ] }:Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.
- algebra = { git = “https://github.com/scipr-lab/zexe”, features = [ “bls12_377” ] }:为 Rust crate that provides concrete instantiations of some finite fields and elliptic curves。
参见博客 Proofs for Inner Pairing Products and Applications 学习笔记第3.1节“SIPP的构建”。
在lib.rs中的实现为 A
⃗
=
{
r
1
a
1
,
⋯
,
r
m
a
m
}
,
B
⃗
=
{
b
1
,
⋯
,
b
m
}
\vec{A}=\{r_1a_1,\cdots,r_ma_m\},\vec{B}=\{b_1,\cdots,b_m\} A ={r1a1,⋯,rmam},B ={b1,⋯,bm},其中 r
i
∈
F
r
,
a
i
∈
G
1
,
b
i
∈
G
2
r_i\in\mathbb{F}_r,a_i\in\mathbb{G}_1,b_i\in\mathbb{G}_2 ri∈Fr,ai∈G1,bi∈G2。
在SIPP协议中 A
⃗
,
B
⃗
,
Z
=
A
⃗
∗
B
⃗
=
∏
i
=
1
m
e
(
A
i
,
B
i
)
\vec{A},\vec{B},Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(A_i,B_i) A ,B ,Z=A ∗B =∏i=1me(Ai,Bi)均为。在实际Verify时,并未逐轮计算 A
⃗
′
,
B
⃗
′
\vec{A}',\vec{B}' A ′,B ′,而是将其展开了利用multi_scalar_mul来计算。同时使用FiatShamirRng将interactive proof转为了non-interactive proof。
详细的代码实现为:
- 初始化 a ⃗ , r ⃗ , B ⃗ \vec{a},\vec{r},\vec{B} a ,r ,B vector信息:
for _ in 0..32 { a.push(G1Projective::rand(&mut rng).into_affine()); b.push(G2Projective::rand(&mut rng).into_affine()); r.push(Fr::rand(&mut rng)); }
- 计算 Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( r i a i , B i ) Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(r_ia_i,B_i) Z=A ∗B =∏i=1me(riai,Bi)
let z = product_of_pairings_with_coeffs::(&a, &b, &r); /// Compute the product of pairings of `r_i * a_i` and `b_i`. pub fn product_of_pairings_with_coeffs( a: &[E::G1Affine], b: &[E::G2Affine], r: &[E::Fr], ) -> E::Fqk { let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::(); let a = E::G1Projective::batch_normalization_into_affine(&a); let elements = a .par_iter() .zip(b) .map(|(a, b)| (E::G1Prepared::from(*a), E::G2Prepared::from(*b))) .collect::(); let num_chunks = elements.len() / rayon::current_num_threads(); let num_chunks = if num_chunks == 0 { elements.len() } else { num_chunks }; let ml_result = elements .par_chunks(num_chunks) .map(E::miller_loop) .product(); E::final_exponentiation(&ml_result).unwrap() }
- SIPP prove证明:(输入为 a ⃗ , r ⃗ , B ⃗ , Z \vec{a},\vec{r},\vec{B},Z a ,r ,B ,Z)
let proof = SIPP::::prove(&a, &b, &r, z); /// Produce a proof of the inner pairing product. pub fn prove( a: &[E::G1Affine], b: &[E::G2Affine], r: &[E::Fr], value: E::Fqk ) -> Result { assert_eq!(a.len(), b.len()); // Ensure the order of the input vectors is a power of 2 assert_eq!(a.len().count_ones(), 1); let mut length = a.len(); assert_eq!(length, b.len()); assert_eq!(length.count_ones(), 1); let mut proof_vec = Vec::new(); // TODO(psi): should we also input a succinct bilinear group description to the rng? let mut rng = FiatShamirRng::::from_seed(&to_bytes![a, b, r, value].unwrap()); let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::(); let mut a = E::G1Projective::batch_normalization_into_affine(&a); let mut b = b.to_vec(); while length != 1 { length /= 2; let a_l = &a[..length]; let a_r = &a[length..]; let b_l = &b[..length]; let b_r = &b[length..]; let z_l = product_of_pairings::(a_r, b_l); let z_r = product_of_pairings::(a_l, b_r); proof_vec.push((z_l, z_r)); rng.absorb(&to_bytes![z_l, z_r].unwrap()); let x: E::Fr = u128::rand(&mut rng).into(); let a_proj = a_l.par_iter().zip(a_r).map(|(a_l, a_r)| { let mut temp = a_r.mul(x); temp.add_assign_mixed(a_l); temp }).collect::(); a = E::G1Projective::batch_normalization_into_affine(&a_proj); let x_inv = x.inverse().unwrap(); let b_proj = b_l.par_iter().zip(b_r).map(|(b_l, b_r)| { let mut temp = b_r.mul(x_inv); temp.add_assign_mixed(b_l); temp }).collect::(); b = E::G2Projective::batch_normalization_into_affine(&b_proj); } Ok(Proof { gt_elems: proof_vec }) }
- SIPP verify 验证:(输入为 a ⃗ , r ⃗ , B ⃗ , Z , p r o o f ⃗ \vec{a},\vec{r},\vec{B},Z,\vec{proof} a ,r ,B ,Z,proof )
let accept = SIPP::::verify(&a, &b, &r, z, &proof); /// Verify an inner-pairing-product proof. pub fn verify( a: &[E::G1Affine], b: &[E::G2Affine], r: &[E::Fr], claimed_value: E::Fqk, proof: &Proof) -> Result { // Ensure the order of the input vectors is a power of 2 let length = a.len(); assert_eq!(length.count_ones(), 1); assert!(length >= 2); assert_eq!(length, b.len()); // Ensure there are the correct number of proof elements let proof_len = proof.gt_elems.len(); assert_eq!(proof_len as f32, f32::log2(length as f32)); // TODO(psi): should we also input a succinct bilinear group description to the rng? let mut rng = FiatShamirRng::::from_seed(&to_bytes![a, b, r, claimed_value].unwrap()); let x_s = proof.gt_elems.iter().map(|(z_l, z_r)| { rng.absorb(&to_bytes![z_l, z_r].unwrap()); let x: E::Fr = u128::rand(&mut rng).into(); x }).collect::(); let mut x_invs = x_s.clone(); algebra_core::batch_inversion(&mut x_invs); let z_prime = claimed_value * &proof.gt_elems.par_iter().zip(&x_s).zip(&x_invs).map(|(((z_l, z_r), x), x_inv)| { z_l.pow(x.into_repr()) * &z_r.pow(x_inv.into_repr()) }).reduce(|| E::Fqk::one(), |a, b| a * &b); let mut s: Vec= vec![E::Fr::one(); length]; let mut s_invs: Vec= vec![E::Fr::one(); length]; // TODO(psi): batch verify for (j, (x, x_inv)) in x_s.into_iter().zip(x_invs).enumerate() { for i in 0..length { if i & (1 << (proof_len - j - 1)) != 0 { s[i] *= &x; s_invs[i] *= &x_inv; } } } let s = s.into_iter().zip(r).map(|(x, r)| (x * r).into_repr()).collect::(); let s_invs = s_invs.iter().map(|x_inv| x_inv.into_repr()).collect::(); let a_prime = VariableBaseMSM::multi_scalar_mul(&a, &s); let b_prime = VariableBaseMSM::multi_scalar_mul(&b, &s_invs); let accept = E::pairing(a_prime, b_prime) == z_prime; Ok(accept) } }