Benedikt Bünz 等人(standford,ethereum,berkeley) 2019年论文《Proofs for Inner Pairing Products and Applications》。
视频介绍:(2020年3月31日) https://www.youtube.com/watch?v=oYdkGIoHKt0
代码实现:
- https://github.com/scipr-lab/ripp【本文重点解析本代码库】
- https://github.com/qope/SIPP(Rust,基于Plonky2和Starky的BN254 pairing以及 ecdsa):在M1 MacBookPro(2021)机器上运行
cargo test test_sipp_circuit -r -- --nocapture
,基本性能为:【排除circuit building时间,做128个pairing聚合用时约145秒。】Aggregating 128 pairings into 1 Start: cirucit build End: circuit build. took 35.545641375s Start: proof generation End: proof generation. took 145.043526708s
注意该代码使用rust stable版本,且低版本可能会报错,建议升级到最新的stable版本:
rustup install stable
代码总体基本结构为:
-
examples:
scaling-ipp.rs
,执行方式可为cargo run --release --example scaling-ipp 10 20 .
-
plot:
ipp-scaling.gnuplot
为gnuplot脚本,使用examples/scaling-ipp 输出的*.csv作图。 -
src:主源代码。 – rng.rs:主要实现
FiatShamirRng
,基于Fiat-Shamir来实现non-interactive proof。【注意,与Merlin实现Fiat-Shamir transform方案有所不同,Merlin transcript是基于STROBE的 封装。Strobe的主要涉及原则为:在任意阶段的密码学输出,除依赖于密钥外,还依赖于之前所有的输入。strobe主要采用对称加密方案,更侧重于简单和安全,而不是速度;noise协议采用非对称加密方案,已在WhatsAPP上落地应用。】(详细参加博客 Merlin——零知识证明(1)理论篇 和博客 strobe——面向IoT物联网应用的密码学协议框架)
/// A `SeedableRng` that refreshes its seed by hashing together the previous seed
/// and the new seed material.
// TODO: later: re-evaluate decision about ChaChaRng
pub struct FiatShamirRng {
r: ChaChaRng,
seed: GenericArray,
#[doc(hidden)]
digest: PhantomData,
}
– lib.rs:实现了论文《Proofs for Inner Pairing Products and Applications》中的SIPP协议。
2. 主要依赖参见https://github.com/scipr-lab/ripp/blob/master/Cargo.toml
中内容,分为[dependencies]
和[dev-dependencies]
,两者的异同点有:
- [dev-dependencies]段落的格式等同于[dependencies]段落,
- 不同之处在于,[dependencies]段落声明的依赖用于构建软件包,
- 而[dev-dependencies]段落声明的依赖仅用于构建测试和性能评估。
- 此外,[dev-dependencies]段落声明的依赖不会传递给其他依赖本软件包的项目
[dependencies]
依赖主要有:
- algebra-core = { git = “https://github.com/scipr-lab/zexe”, features = [ “parallel” ] }:为Rust crate that provides generic arithmetic for finite fields and elliptic curves。其中features
parallel = [ "std", "rayon" ]
。 - rayon:为data-parallelism Rust库。非常轻量,很容易convert a sequential computation into a parallel one。(具体可参加博客 Rayon: data parallelism in Rust)
// sequential iterator
let total_price = stores.iter()
.map(|store| store.compute_price(&list))
.sum();
// parallel iterator
let total_price = stores.par_iter()
.map(|store| store.compute_price(&list))
.sum();
- rand_core:主要用于实现the core trait:
RngCore
。 - rand_chacha:为使用ChaCha算法实现的密码学安全的随机数生成器。
- digest:为
https://github.com/RustCrypto/traits
中的digest算法。
[dev-dependencies]
依赖主要有:
- blake2:BLAKE2 hash function family库。
- rand:provides utilities to generate random numbers, to convert them to useful types and distributions, and some randomness-related algorithms.
- csv:A fast and flexible CSV reader and writer for Rust, with support for Serde.
- serde = { version = “1”, features = [ “derive” ] }:Serde is a framework for serializing and deserializing Rust data structures efficiently and generically.
- algebra = { git = “https://github.com/scipr-lab/zexe”, features = [ “bls12_377” ] }:为 Rust crate that provides concrete instantiations of some finite fields and elliptic curves。
参见博客 Proofs for Inner Pairing Products and Applications 学习笔记第3.1节“SIPP的构建”。 在
lib.rs
中的实现为
A
⃗
=
{
r
1
a
1
,
⋯
,
r
m
a
m
}
,
B
⃗
=
{
b
1
,
⋯
,
b
m
}
\vec{A}=\{r_1a_1,\cdots,r_ma_m\},\vec{B}=\{b_1,\cdots,b_m\}
A
={r1a1,⋯,rmam},B
={b1,⋯,bm},其中
r
i
∈
F
r
,
a
i
∈
G
1
,
b
i
∈
G
2
r_i\in\mathbb{F}_r,a_i\in\mathbb{G}_1,b_i\in\mathbb{G}_2
ri∈Fr,ai∈G1,bi∈G2。 在SIPP协议中
A
⃗
,
B
⃗
,
Z
=
A
⃗
∗
B
⃗
=
∏
i
=
1
m
e
(
A
i
,
B
i
)
\vec{A},\vec{B},Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(A_i,B_i)
A
,B
,Z=A
∗B
=∏i=1me(Ai,Bi)均为。在实际Verify时,并未逐轮计算
A
⃗
′
,
B
⃗
′
\vec{A}',\vec{B}'
A
′,B
′,而是将其展开了利用multi_scalar_mul
来计算。同时使用FiatShamirRng
将interactive proof转为了non-interactive proof。 详细的代码实现为:
- 初始化 a ⃗ , r ⃗ , B ⃗ \vec{a},\vec{r},\vec{B} a ,r ,B vector信息:
for _ in 0..32 {
a.push(G1Projective::rand(&mut rng).into_affine());
b.push(G2Projective::rand(&mut rng).into_affine());
r.push(Fr::rand(&mut rng));
}
- 计算 Z = A ⃗ ∗ B ⃗ = ∏ i = 1 m e ( r i a i , B i ) Z=\vec{A}*\vec{B}=\prod_{i=1}^{m}e(r_ia_i,B_i) Z=A ∗B =∏i=1me(riai,Bi)
let z = product_of_pairings_with_coeffs::(&a, &b, &r);
/// Compute the product of pairings of `r_i * a_i` and `b_i`.
pub fn product_of_pairings_with_coeffs(
a: &[E::G1Affine],
b: &[E::G2Affine],
r: &[E::Fr],
) -> E::Fqk {
let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::();
let a = E::G1Projective::batch_normalization_into_affine(&a);
let elements = a
.par_iter()
.zip(b)
.map(|(a, b)| (E::G1Prepared::from(*a), E::G2Prepared::from(*b)))
.collect::();
let num_chunks = elements.len() / rayon::current_num_threads();
let num_chunks = if num_chunks == 0 { elements.len() } else { num_chunks };
let ml_result = elements
.par_chunks(num_chunks)
.map(E::miller_loop)
.product();
E::final_exponentiation(&ml_result).unwrap()
}
- SIPP prove证明:(输入为 a ⃗ , r ⃗ , B ⃗ , Z \vec{a},\vec{r},\vec{B},Z a ,r ,B ,Z)
let proof = SIPP::::prove(&a, &b, &r, z);
/// Produce a proof of the inner pairing product.
pub fn prove(
a: &[E::G1Affine],
b: &[E::G2Affine],
r: &[E::Fr],
value: E::Fqk
) -> Result {
assert_eq!(a.len(), b.len());
// Ensure the order of the input vectors is a power of 2
assert_eq!(a.len().count_ones(), 1);
let mut length = a.len();
assert_eq!(length, b.len());
assert_eq!(length.count_ones(), 1);
let mut proof_vec = Vec::new();
// TODO(psi): should we also input a succinct bilinear group description to the rng?
let mut rng = FiatShamirRng::::from_seed(&to_bytes![a, b, r, value].unwrap());
let a = a.into_par_iter().zip(r).map(|(a, r)| a.mul(*r)).collect::();
let mut a = E::G1Projective::batch_normalization_into_affine(&a);
let mut b = b.to_vec();
while length != 1 {
length /= 2;
let a_l = &a[..length];
let a_r = &a[length..];
let b_l = &b[..length];
let b_r = &b[length..];
let z_l = product_of_pairings::(a_r, b_l);
let z_r = product_of_pairings::(a_l, b_r);
proof_vec.push((z_l, z_r));
rng.absorb(&to_bytes![z_l, z_r].unwrap());
let x: E::Fr = u128::rand(&mut rng).into();
let a_proj = a_l.par_iter().zip(a_r).map(|(a_l, a_r)| {
let mut temp = a_r.mul(x);
temp.add_assign_mixed(a_l);
temp
}).collect::();
a = E::G1Projective::batch_normalization_into_affine(&a_proj);
let x_inv = x.inverse().unwrap();
let b_proj = b_l.par_iter().zip(b_r).map(|(b_l, b_r)| {
let mut temp = b_r.mul(x_inv);
temp.add_assign_mixed(b_l);
temp
}).collect::();
b = E::G2Projective::batch_normalization_into_affine(&b_proj);
}
Ok(Proof {
gt_elems: proof_vec
})
}
- SIPP verify 验证:(输入为 a ⃗ , r ⃗ , B ⃗ , Z , p r o o f ⃗ \vec{a},\vec{r},\vec{B},Z,\vec{proof} a ,r ,B ,Z,proof )
let accept = SIPP::::verify(&a, &b, &r, z, &proof);
/// Verify an inner-pairing-product proof.
pub fn verify(
a: &[E::G1Affine],
b: &[E::G2Affine],
r: &[E::Fr],
claimed_value: E::Fqk,
proof: &Proof
) -> Result {
// Ensure the order of the input vectors is a power of 2
let length = a.len();
assert_eq!(length.count_ones(), 1);
assert!(length >= 2);
assert_eq!(length, b.len());
// Ensure there are the correct number of proof elements
let proof_len = proof.gt_elems.len();
assert_eq!(proof_len as f32, f32::log2(length as f32));
// TODO(psi): should we also input a succinct bilinear group description to the rng?
let mut rng = FiatShamirRng::::from_seed(&to_bytes![a, b, r, claimed_value].unwrap());
let x_s = proof.gt_elems.iter().map(|(z_l, z_r)| {
rng.absorb(&to_bytes![z_l, z_r].unwrap());
let x: E::Fr = u128::rand(&mut rng).into();
x
}).collect::();
let mut x_invs = x_s.clone();
algebra_core::batch_inversion(&mut x_invs);
let z_prime = claimed_value * &proof.gt_elems.par_iter().zip(&x_s).zip(&x_invs).map(|(((z_l, z_r), x), x_inv)| {
z_l.pow(x.into_repr()) * &z_r.pow(x_inv.into_repr())
}).reduce(|| E::Fqk::one(), |a, b| a * &b);
let mut s: Vec = vec![E::Fr::one(); length];
let mut s_invs: Vec = vec![E::Fr::one(); length];
// TODO(psi): batch verify
for (j, (x, x_inv)) in x_s.into_iter().zip(x_invs).enumerate() {
for i in 0..length {
if i & (1
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?