一、多元函数的极值及最大值与最小值: 定义:设函数z=f(x,y)z=f(x,y)的定义域为D,P0(x0,y0)D,P0(x0,y0)为DD的内点。若存在P0P0的某个邻域U(P0)⊂DU(P0)⊂D。
若对于该邻域内异与P0P0的任何点(x,y)(x,y),都有: f(x,y)f(x0,y0) 则称函数f(x,y)f(x,y)在点(x0,y0)(x0,y0)有极小值f(x0,y0)f(x0,y0),点(x0,y0)(x0,y0)称为函数f(x,y)f(x,y)的极小值点; 极大值与极小值统称为极值。使得函数取得极值的点称为极值点。
定理1(必要条件):设函数z=f(x,y)z=f(x,y)在点(x0,y0)(x0,y0)具有偏导数,且在点(x0,y0)(x0,y0)处有极值,则有 fx(x0,y0)=0, fy(x0,y0)=0 fx(x0,y0)=0, fy(x0,y0)=0 定理2(充分条件):设函数z=f(x,y)z=f(x,y)在点(x0,y0)(x0,y0)的某一邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0, fy(x0,y0)=0fx(x0,y0)=0, fy(x0,y0)=0,令 fxx(x0,y0)=A, fxy(x0,y0)=B, fyy(x0,y0)=C fxx(x0,y0)=A, fxy(x0,y0)=B, fyy(x0,y0)=C 则有: 因为AC-B^2>0,A和C肯定是同号的,A0, 所以,也可以用C的符号判断极大极小。 则f(xy)f(xy)在(x0,y0)(x0,y0)是否取得极值的条件如下:AC-B^2>0时,有极值,当A
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?