您当前的位置: 首页 >  人工智能

ZhangJiQun&MXP

暂无认证

  • 1浏览

    0关注

    1187博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

人工智能

ZhangJiQun&MXP 发布时间:2021-08-17 10:23:33 ,浏览量:1

人工智能

是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。由于这个定义只阐述了目标,而没有限定方法,因此实现人工智能存在的诸多方法和分支,导致其变成一个“大杂烩”式的学科。

机器学习

区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。这句话有点“云山雾罩”的感觉,让人不知所云,下面我们从机器学习的实现和方法论两个维度进行剖析,帮助读者更加清晰地认识机器学习的来龙去脉。

模型假设、评价函数(损失/优化目标)和优化算法是构成模型

机器如一个机械的学生一样,只能通过尝试答对(最小化损失)大量的习题(已知样本)来学习知识(模型参数www),并期望用学习到的知识(模型参数www)所代表的模型H(w,X)H(w, X)H(w,X),回答不知道答案的考试题(未知样本)。最小化损失是模型的优化目标,实现损失最小化的方法称为优化算法,也称为寻解算法(找到使得损失函数最小的参数解)。参数www和输入XXX组成公式的基本结构称为假设。在牛顿第二定律的案例中,基于对数据的观测,我们提出了线性假设,即作用力和加速度是线性关系,用线性方程表示。由此可见,模型假设、评价函数(损失/优化目标)和优化算法是构成模型的三个部分。

 

 

  • 模型假设:世界上的可能关系千千万,漫无目标的试探YYY~XXX之间的关系显然是十分低效的。因此假设空间先圈定了一个模型能够表达的关系可能,如蓝色圆圈所示。机器还会进一步在假设圈定的圆圈内寻找最优的YYY~XXX关系,即确定参数www。
  • 评价函数:寻找最优之前,我们需要先定义什么是最优,即评价一个YYY~XXX关系的好坏的指标。通常衡量该关系是否能很好的拟合现有观测样本,将拟合的误差最小作为优化目标。
  • 优化算法:设置了评价指标后,就可以在假设圈定的范围内,将使得评价指标最优(损失函数最小/最拟合已有观测样本)的YYY~XXX关系找出来,这个寻找的方法即为优化算法。最笨的优化算法即按照参数的可能,穷举每一个可能取值来计算损失函数,保留使得损失函数最小的参数作为最终结果。

从上述过程可以得出,机器学习的过程与牛顿第二定律的学习过程基本一致,都分为假设、评价和优化三个阶段:

  1. 假设:通过观察加速度aaa和作用力FFF的观测数据,假设aaa和FFF是线性关系,即a=w⋅Fa = w \cdot Fa=w⋅F。
  2. 评价:对已知观测数据上的拟合效果好,即w⋅Fw \cdot Fw⋅F计算的结果要和观测的aaa尽量接近。
  3. 优化:在参数www的所有可能取值中,发现w=1/mw=1/mw=1/m可使得评价最好(最拟合观测样本)。

机器执行学习任务的框架体现了其学习的本质是“参数估计”(Learning is parameter estimation)。在此基础上,许多看起来完全不一样的问题都可以使用同样的框架进行学习,如科学定律、图像识别、机器翻译和自动问答等,它们的学习目标都是拟合一个“大公式”

 

关注
打赏
1665659684
查看更多评论
立即登录/注册

微信扫码登录

0.0382s