OpenGL Shader 加载3DMax模型
原创yulinxx 最后发布于2016-12-20 14:50:12 阅读数 2919 收藏
展开
现在市面上有一个很流行的模型加载库,叫做Assimp,全称为Open Asset Import Library。Assimp可以导入几十种不同格式的模型文件(同样也可以导出部分模型格式)。只要Assimp加载完了模型文件,我们就可以从Assimp上获取所有我们需要的模型数据。Assimp把不同的模型文件都转换为一个统一的数据结构,所有无论我们导入何种格式的模型文件,都可以用同一个方式去访问我们需要的模型数据。
当导入一个模型文件时,即Assimp加载一整个包含所有模型和场景数据的模型文件到一个scene对象时,Assimp会为这个模型文件中的所有场景节点、模型节点都生成一个具有对应关系的数据结构,且将这些场景中的各种元素与模型数据对应起来。
http://learnopengl-cn.readthedocs.io/zh/latest/03%20Model%20Loading/01%20Assimp/
Assimp:
下载,解压, 然后用CMake加载,指定输出路径后
Configure,再Generate,
然后用VS2015打开 H:\assimp-3.3.1\bin\Assimp.sln 编译
在 H:\assimp-3.3.1\bin\code\Debug 中,即可生成
assimp-vc140-mt.lib assimp-vc140-mt.dll
然后在项目中即可使用
VS2015 可用:
包含: lib , dll 以及头文件, 可以直接使用. .VS2015....assimp-3.3.1
http://download.csdn.net/detail/yulinxx/9714936
代码:
main.cpp
// Std. Includes
#include
// GLEW
#define GLEW_STATIC
#include
// GLFW
#include
// GL includes
#include "Shader.h"
#include "Camera.h"
#include "Model.h"
// GLM Mathemtics
#include
#include
#include
// Other Libs
#include
#pragma comment(lib, "./SOIL.lib")
#pragma comment (lib, "opengl32.lib")
#pragma comment (lib, "glew32s.lib")
#pragma comment (lib, "glfw3.lib")
#pragma comment (lib, "glfw3dll.lib")
#pragma comment (lib, "glew32mxs.lib")
#pragma comment (lib, "assimp.lib")
// Properties
GLuint screenWidth = 800, screenHeight = 600;
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement();
// Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
bool keys[1024];
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
// The MAIN function, from here we start our application and run the Game loop
int main()
{
// Init GLFW
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", nullptr, nullptr); // Windowed
glfwMakeContextCurrent(window);
// Set the required callback functions
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// Options
//glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Initialize GLEW to setup the OpenGL Function pointers
glewExperimental = GL_TRUE;
glewInit();
// Define the viewport dimensions
glViewport(0, 0, screenWidth, screenHeight);
// Setup some OpenGL options
glEnable(GL_DEPTH_TEST);
// Setup and compile our shaders
Shader shader("./Shader/obj_vertex", "./Shader/obj_fragement");
Shader lampShader("./Shader/lamp_vertex", "./Shader/lamp_fragement");
// Load models
Model ourModel("./nanosuit.obj");
// Used a lamp object here. Find one yourself on the internet, or create your own one ;) (or be oldschool and set the VBO and VAO yourselves)
//Model lightBulb("./Bulb.obj");
Model lightBulb("./nanosuit.obj");
// Draw in wireframe
//glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
// Point light positions
glm::vec3 pointLightPositions[] = {
glm::vec3(2.3f, -1.6f, -3.0f),
glm::vec3(-1.7f, 0.9f, 1.0f)
};
// Game loop
while (!glfwWindowShouldClose(window))
{
// Set frame time
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// Check and call events
glfwPollEvents();
Do_Movement();
// Clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shader.useShaderPrograme(); //
vertices = vertices;this->indices = indices;
this->textures = textures;
// Now that we have all the required data, set the vertex buffers and its attribute pointers.
this->setupMesh();
}
// Render the mesh
void Draw(Shader shader)
{
// Bind appropriate textures
GLuint diffuseNr = 1;
GLuint specularNr = 1;
for (GLuint i = 0; i < this->textures.size(); i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Active proper texture unit before binding
// Retrieve texture number (the N in diffuse_textureN)
stringstream ss;
string number;
string name = this->textures[i].type;
if (name == "texture_diffuse")
ss VAO);
glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
// Always good practice to set everything back to defaults once configured.
for (GLuint i = 0; i < this->textures.size(); i++)
{
glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(GL_TEXTURE_2D, 0);
}
}
private:
/* Render data */
GLuint VAO, VBO, EBO;
/* Functions */
// Initializes all the buffer objects/arrays
void setupMesh()
{
// Create buffers/arrays
glGenVertexArrays(1, &this->VAO);
glGenBuffers(1, &this->VBO);
glGenBuffers(1, &this->EBO);
glBindVertexArray(this->VAO);
// Load data into vertex buffers
glBindBuffer(GL_ARRAY_BUFFER, this->VBO);
// A great thing about structs is that their memory layout is sequential for all its items.
// The effect is that we can simply pass a pointer to the struct and it translates perfectly to a glm::vec3/2 array which
// again translates to 3/2 floats which translates to a byte array.
glBufferData(GL_ARRAY_BUFFER, this->vertices.size() * sizeof(Vertex), &this->vertices[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->indices.size() * sizeof(GLuint), &this->indices[0], GL_STATIC_DRAW);
// Set the vertex attribute pointers
// Vertex Positions
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)0);
// Vertex Normals
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, Normal));
// Vertex Texture Coords
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, TexCoords));
glBindVertexArray(0);
}
};
model.h
#pragma once
// Std. Includes
#include
#include
#include
#include
#include
#include
using namespace std;
// GL Includes
#include // Contains all the necessery OpenGL includes
#include
#include
#include
#include
#include
#include
#include "Mesh.h"
GLint TextureFromFile(const char* path, string directory);
class Model
{
public:
/* Functions */
// Constructor, expects a filepath to a 3D model.
Model(GLchar* path)
{
this->loadModel(path);
}
// Draws the model, and thus all its meshes
void Draw(Shader shader)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
this->meshes[i].Draw(shader);
}
private:
/* Model Data */
vector meshes;
string directory;
vector textures_loaded; // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
/* Functions */
// Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string path)
{
// Read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
// Check for errors
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
cout mRootNode, scene);
}
// Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode* node, const aiScene* scene)
{
// Process each mesh located at the current node
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
// The node object only contains indices to index the actual objects in the scene.
// The scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
// After we've processed all of the meshes (if any) we then recursively process each of the children nodes
for (GLuint i = 0; i < node->mNumChildren; i++)
{
this->processNode(node->mChildren[i], scene);
}
}
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
// Data to fill
vector vertices;
vector indices;
vector textures;
// Walk through each of the mesh's vertices
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
// Positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
// Normals
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
// Texture Coordinates
if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
{
glm::vec2 vec;
// A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
// Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// Retrieve all indices of the face and store them in the indices vector
for (GLuint j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
// Process materials
if (mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
// We assume a convention for sampler names in the shaders. Each diffuse texture should be named
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
// Same applies to other texture as the following list summarizes:
// Diffuse: texture_diffuseN
// Specular: texture_specularN
// Normal: texture_normalN
// 1. Diffuse maps
vector diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. Specular maps
vector specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
}
// Return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}
// Checks all material textures of a given type and loads the textures if they're not loaded yet.
// The required info is returned as a Texture struct.
vector loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
{
vector textures;
for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
GLboolean skip = false;
for (GLuint j = 0; j < textures_loaded.size(); j++)
{
if (textures_loaded[j].path == str)
{
textures.push_back(textures_loaded[j]);
skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if (!skip)
{ // If texture hasn't been loaded already, load it
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
this->textures_loaded.push_back(texture); // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
}
}
return textures;
}
};
GLint TextureFromFile(const char* path, string directory)
{
//Generate texture ID and load texture data
string filename = string(path);
filename = directory + '/' + filename;
GLuint textureID;
glGenTextures(1, &textureID);
int width, height;
unsigned char* image = SOIL_load_image(filename.c_str(), &width, &height, 0, SOIL_LOAD_RGB);
// Assign texture to ID
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
// Parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
SOIL_free_image_data(image);
return textureID;
}
camera.h
//Camera.h
#pragma once
// Std. Includes
#include
// GL Includes
#include
#include
#include
// 摄像机移动方向 程序中用WSAD控制
enum Camera_Movement {
FORWARD,
BACKWARD,
LEFT,
RIGHT
};
// Default camera values
const GLfloat YAW = -90.0f;
const GLfloat PITCH = 0.0f;
const GLfloat SPEED = 3.0f;
const GLfloat SENSITIVTY = 0.25f;
const GLfloat ZOOM = 45.0f;
class Camera
{
public:
// Camera Attributes
glm::vec3 Position;
glm::vec3 Front;
glm::vec3 Up;
glm::vec3 Right;
glm::vec3 WorldUp;
// Eular Angles
GLfloat Yaw;
GLfloat Pitch;
// Camera options
GLfloat MovementSpeed;
GLfloat MouseSensitivity;
GLfloat Zoom;
// Constructor with vectors
Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), GLfloat yaw = YAW,
GLfloat pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)),
MovementSpeed(SPEED), MouseSensitivity(SENSITIVTY), Zoom(ZOOM)
{
this->Position = position;
this->WorldUp = up;
this->Yaw = yaw;
this->Pitch = pitch;
this->updateCameraVectors();
}
// Constructor with scalar values
Camera(GLfloat posX, GLfloat posY, GLfloat posZ, GLfloat upX, GLfloat upY,
GLfloat upZ, GLfloat yaw, GLfloat pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)),
MovementSpeed(SPEED), MouseSensitivity(SENSITIVTY), Zoom(ZOOM)
{
this->Position = glm::vec3(posX, posY, posZ);
this->WorldUp = glm::vec3(upX, upY, upZ);
this->Yaw = yaw;
this->Pitch = pitch;
this->updateCameraVectors();
}
// Returns the view matrix calculated using Eular Angles and the LookAt Matrix
glm::mat4 GetViewMatrix()
{
return glm::lookAt(this->Position, this->Position + this->Front, this->Up);
}
// 按键处理
void ProcessKeyboard(Camera_Movement direction, GLfloat deltaTime)
{
GLfloat velocity = this->MovementSpeed * deltaTime;
if (direction == FORWARD)
this->Position += this->Front * velocity;
if (direction == BACKWARD)
this->Position -= this->Front * velocity;
if (direction == LEFT)
this->Position -= this->Right * velocity;
if (direction == RIGHT)
this->Position += this->Right * velocity;
}
// 鼠标移动处理
void ProcessMouseMovement(GLfloat xoffset, GLfloat yoffset,
GLboolean constrainPitch = true)
{
xoffset *= this->MouseSensitivity;
yoffset *= this->MouseSensitivity;
this->Yaw += xoffset;
this->Pitch += yoffset;
// Make sure that when pitch is out of bounds, screen doesn't get flipped
if (constrainPitch)
{
if (this->Pitch > 89.0f)
this->Pitch = 89.0f;
if (this->Pitch < -89.0f)
this->Pitch = -89.0f;
}
// Update Front, Right and Up Vectors using the updated Eular angles
this->updateCameraVectors();
}
// Processes input received from a mouse scroll-wheel event.
// Only requires input on the vertical wheel-axis
void ProcessMouseScroll(GLfloat yoffset)
{
if (this->Zoom >= 1.0f && this->Zoom Zoom -= yoffset;
if (this->Zoom Zoom = 1.0f;
if (this->Zoom >= 45.0f)
this->Zoom = 45.0f;
}
private:
// Calculates the front vector from the Camera's (updated) Eular Angles
void updateCameraVectors()
{
// Calculate the new Front vector
glm::vec3 front;
front.x = cos(glm::radians(this->Yaw)) * cos(glm::radians(this->Pitch));
front.y = sin(glm::radians(this->Pitch));
front.z = sin(glm::radians(this->Yaw)) * cos(glm::radians(this->Pitch));
this->Front = glm::normalize(front);
// Also re-calculate the Right and Up vector
// Normalize the vectors, because their length gets closer to 0 the more
// you look up or down which results in slower movement.
this->Right = glm::normalize(glm::cross(this->Front, this->WorldUp));
this->Up = glm::normalize(glm::cross(this->Right, this->Front));
}
};
shader.h
//Shader.h
#pragma once
#ifndef TEXTURE_SHADER_H_
#define TEXTURE_SHADER_H_
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
class Shader
{
public:
Shader(const GLchar* vertexPath, const GLchar* fragmentPath);
~Shader();
public:
void useShaderPrograme();
GLuint getPrograme() {
return this->m_nProgram;
}
private:
GLuint m_nProgram;
};
Shader::Shader(const GLchar* vertexPath, const GLchar* fragmentPath)
{
std::string vertexCode;
std::string fragmentCode;
std::ifstream vertexShaderF;
std::ifstream fragementShaderF;
vertexShaderF.exceptions(std::ifstream::badbit);
fragementShaderF.exceptions(std::ifstream::badbit);
try
{
vertexShaderF.open(vertexPath); // 打开文件
fragementShaderF.open(fragmentPath);
std::stringstream vertexShaderStream, fragementShaderStream;
vertexShaderStream
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?