您当前的位置: 首页 >  Java

white camel

暂无认证

  • 2浏览

    0关注

    442博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

Java并发编程 一 线程介绍、创建线程的4种方式、线程常用方法、两阶段终止状态、线程的五种/六种状态

white camel 发布时间:2020-12-22 18:27:54 ,浏览量:2

一、线程与进程、并行并发、同步异步概念 1、进程与进程

进程: 资源分配的最小单位

  • 进程是线程的容器, 一个进程中包含多个线程, 真正执行任务的是线程

线程: 资源调度的最小单位

进程
  • 程序指令数据组成,但是这些 指令要运行,数据要读写,就必须将指令加载到cpu,数据加载至内存。在指令运行过程中还需要用到磁盘,网络等设备,进程就是用来加载指令,管理内存,管理IO的
  • 当一个指令被运行,从磁盘加载这个程序的代码到内存,这时候就开启了一个进程
  • 进程就可以视为程序的一个实例,大部分程序都可以运行多个实例进程(例如记事本,浏览器等),部分只可以运行一个实例进程(例如360安全卫士)
线程
  • 一个进程之内可以分为多个线程
  • 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行
  • Java 中,线程作为资源的最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作为线程的容器。
二者对比
  • 进程基本上相互独立的,而线程存在于进程内,是进程的一个子集
  • 进程拥有共享的资源,如内存空间等,供其内部的线程共享; 进程间通信较为复杂 同一台计算机的进程通信称为 IPC(Inter-process communication)
  • 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
  • 线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量
  • 线程更轻量,线程上下文切换成本一般上要比进程上下文切换低
2、 并行与并发

并发: 在单核CPU下, 一定是并发执行的, 也就是在同一个时间段内一起执行. 实际还是串行执行, CPU的时间片切换非常快, 给人一种同时运行的感觉。

并行: 在多核CPU下, 能真正意义上实现并行执行, 在同一个时刻, 多个线程同时执行; 比如说2核cpu, 同时执行4个线程. 理论上同时可以有2个线程是并行执行的. 此时还是存在并发, 因为2个cpu也会同时切换不同的线程执行任务罢了

并发 (concurrent)
  • 微观串行, 宏观并行
  • 单核 cpu下,线程实际还是串行执行的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于cpu 在线程间(时间片很短)的切换非常快,给人的 感觉是同时运行的 。一般会将这种线程轮流使用 CPU的做法称为并发(concurrent)
  • 线程轮流使用cput称为并发(concurrent) 1583408729416
并行
  • 多核 cpu下,每个核(core) 都可以调度运行线程,这时候线程可以是并行的,不同的线程同时使用不同的cpu在执行。 1583408812725
二者对比
  • 引用 Rob Pike 的一段描述:
    • 并发(concurrent): 是同一时间应对(dealing with)多件事情的能力
    • 并行(parallel): 是同一时间动手做(doing)多件事情的能力

例子

  • 家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发
  • 家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一个人用锅时,另一个人就得等待)
  • 雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是 并行
3、同步和异步

调用方的角度讲

  • 如果需要等待结果返回才能继续运行的话就是同步
  • 如果不需要等待就是异步
1 设计
  • 多线程可以让方法执行变为异步的(即不要巴巴干等着)比如说读取磁盘文件时,假设读取操作花费了 5 秒钟,如果没有线程调度机制,这5秒cpu什么都做不了,其它代码都得暂停
2 结论
  • 比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换,避免阻塞主线程
  • tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程
  • UI 程序中,开线程进行其他操作,避免阻塞 UI 线程
二、线程的创建 (重点) 1、创建一个线程(非主线程) 1、通过继承Thread创建线程
public class CreateThread {
	public static void main(String[] args) {
		Thread myThread = new MyThread();
        // 启动线程
		myThread.start();
	}
}

class MyThread extends Thread {
	@Override
	public void run() {
		System.out.println("my thread running...");
	}
}
  • 使用继承方式的好处是,在run()方法内获取当前线程直接使用this就可以了,无须使用Thread.currentThread()方法;不好的地方是Java不支持多继承,如果继承了Thread类,那么就不能再继承其他类。另外任务与代码没有分离,当多个线程执行一样的任务时需要多份任务代码
2、使用Runnable配合Thread (推荐)
public class Test2 {
	public static void main(String[] args) {
		//创建线程任务
		Runnable r = new Runnable() {
			@Override
			public void run() {
				System.out.println("Runnable running");
			}
		};
		//将Runnable对象传给Thread
		Thread t = new Thread(r);
		//启动线程
		t.start();
	}
}

或者

public class CreateThread2 {
   private static class MyRunnable implements Runnable {
      @Override
      public void run() {
         System.out.println("my runnable running...");
      }
   }

   public static void main(String[] args) {
      MyRunnable myRunnable = new MyRunnable();
      Thread thread = new Thread(myRunnable);
      thread.start();
   }
}
  • 通过实现Runnable接口,并且实现run()方法。在创建线程时作为参数传入该类的实例即可
方法二的简化:使用lambda表达式简化操作
  • 当一个接口带有@FunctionalInterface注解时,是可以使用lambda来简化操作的
  • 所以方法二中的代码可以被简化为
public class Test2 {
	public static void main(String[] args) {
		//创建线程任务
		Runnable r = () -> {
            //直接写方法体即可
			System.out.println("Runnable running");
			System.out.println("Hello Thread");
		};
		//将Runnable对象传给Thread
		Thread t = new Thread(r);
		//启动线程
		t.start();
	}
}
原理之 Thread 与 Runnable 的关系
  • 分析 Thread 的源码,理清它与 Runnable 的关系

小结

  • 继承Thread方式: 是把线程和任务合并在了一起
  • 实现Runnable方式: 是把线程和任务分开了
  • 用 Runnable 更容易与线程池等高级 API 配合 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活
3、使用FutureTask与Thread结合

使用FutureTask可以用泛型指定线程的返回值类型(Runnable的run方法没有返回值)

public class Test3 {
	public static void main(String[] args) throws ExecutionException, InterruptedException {
        //需要传入一个Callable对象
		FutureTask task = new FutureTask(new Callable() {
			@Override
			public Integer call() throws Exception {
				System.out.println("线程执行!");
				Thread.sleep(1000);
				return 100;
			}
		});

		Thread r1 = new Thread(task, "t2");
		r1.start();
		//获取线程中方法执行后的返回结果
		System.out.println(task.get());
	}
}

public class UseFutureTask {
   public static void main(String[] args) throws ExecutionException, InterruptedException {
      FutureTask futureTask = new FutureTask(new MyCall());
      Thread thread = new Thread(futureTask);
      thread.start();
      // 获得线程运行后的返回值
      System.out.println(futureTask.get());
   }
}

class MyCall implements Callable {
   @Override
   public String call() throws Exception {
      return "hello world";
   }
}
4、使用线程池来创建线程
/**
 * 创建线程的方式四:使用线程池
 *
 * 好处:
 * 1.提高响应速度(减少了创建新线程的时间)
 * 2.降低资源消耗(重复利用线程池中线程,不需要每次都创建)
 * 3.便于线程管理
 *      corePoolSize:核心池的大小
 *      maximumPoolSize:最大线程数
 *      keepAliveTime:线程没有任务时最多保持多长时间后会终止
 *
 *
 * 面试题:创建多线程有几种方式?四种!
 */

class NumberThread implements Runnable{

    @Override
    public void run() {
        for(int i = 0;i  {
            System.out.println("sleep...");
            try {
                Thread.sleep(5000); // wait, join
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        t1.start();
        Thread.sleep(1000);
        System.out.println("iterrupt..");
        t1.interrupt();
        System.out.println(t1.isInterrupted()); // 如果是打断sleep,wait,join的线程, 即使打断了, 标记也为false
    }
}
sleep...
iterrupt..
打断标记为:false
java.lang.InterruptedException: sleep interrupted
	at java.lang.Thread.sleep(Native Method)
	at com.guizy.ThreadPrintDemo.lambda$main$0(ThreadPrintDemo.java:14)
	at java.lang.Thread.run(Thread.java:748)

Process finished with exit code 0
打断正常运行的线程
  • 打断正常运行的线程, 线程并不会暂停,只是调用方法Thread.currentThread().isInterrupted();的返回值为true,可以判断Thread.currentThread().isInterrupted();的值来手动停止线程
public static void main(String[] args) throws InterruptedException {
    Thread t1 = new Thread(() -> {
        while(true) {
            boolean interrupted = Thread.currentThread().isInterrupted();
            if(interrupted) {
                System.out.println("被打断了, 退出循环");
                break;
            }
        }
    }, "t1");
    t1.start();
    Thread.sleep(1000);
    System.out.println("interrupt");
    t1.interrupt();
    System.out.println("打断标记为: "+t1.isInterrupted());
}
interrupt
被打断了, 退出循环
打断标记为: true

Process finished with exit code 0
3.6、 终止模式之两阶段终止模式

当我们在执行线程一时,想要终止线程二,这是就需要使用interrupt方法来优雅的停止线程二。

  • Two Phase Termination,就是考虑在一个线程T1中如何优雅地终止另一个线程T2?这里的优雅指的是给T2线程一个处理其他事情的机会(如释放锁)。 在这里插入图片描述

  • 如下所示:那么线程的isInterrupted()方法可以取得线程的打断标记

    • 如果线程在睡眠sleep期间被打断,打断标记是不会变的,为false,但是sleep期间被打断会抛出异常,我们据此手动设置打断标记为true
    • 如果是在程序正常运行期间被打断的,那么打断标记就被自动设置为true。处理好这两种情况那我们就可以放心地来料理后事啦!

下图①就是正常运行打断, ②是在睡眠中被打断 1583496991915

代码实现如下:

public class Test7 {
	public static void main(String[] args) throws InterruptedException {
		Monitor monitor = new Monitor();
		monitor.start();
		Thread.sleep(3500);
		monitor.stop();
	}
}

class Monitor {

	Thread monitor;

	/**
	 * 启动监控器线程
	 */
	public void start() {
		//设置线控器线程,用于监控线程状态
		monitor = new Thread() {
			@Override
			public void run() {
				//开始不停的监控
				while (true) {
                    //判断当前线程是否被打断了
					if(Thread.currentThread().isInterrupted()) {
						System.out.println("处理后续任务");
                        //终止线程执行
						break;
					}
					System.out.println("监控器运行中...");
					try {
						//线程休眠
						Thread.sleep(1000);
					} catch (InterruptedException e) {
						e.printStackTrace();
						//如果是在休眠的时候被打断,不会将打断标记设置为true,这时要重新设置打断标记
						Thread.currentThread().interrupt();
					}
				}
			}
		};
		monitor.start();
	}

	/**
	 * 	用于停止监控器线程
	 */
	public void stop() {
		//打断线程
		monitor.interrupt();
	}
}
3.7、sleep,yiled,wait,join 对比

补充:

  • sleep,join,yield,interrupted是Thread类中的方法
  • wait/notify是object中的方法
  • sleep 不释放锁、释放cpu
  • join 释放锁、抢占cpu
  • yiled 不释放锁、释放cpu
  • wait 释放锁、释放cpu

在这里插入图片描述

3.8、 守护线程
  • Java进程中有多个线程在执行时,只有当所有非守护线程都执行完毕后,Java进程才会结束。但当非守护线程全部执行完毕后,守护线程无论是否执行完毕,也会一同结束。

注意:

  • 垃圾回收器线程就是一种守护线程
  • Tomcat 中的 Acceptor 和 Poller 线程都是守护线程,所以 Tomcat 接收到 shutdown 命令后,不会等
四、 线程状态 五种状态
  • 操作系统的层面上 1583507073055
  1. 初始状态,仅仅是在语言层面上创建了线程对象,即Thead thread = new Thead();,还未与操作系统线程关联
  2. 可运行状态,也称就绪状态,指该线程已经被创建,与操作系统相关联,等待cpu给它分配时间片就可运行
  3. 运行状态,指线程获取了CPU时间片,正在运行
    1. 当CPU时间片用完,线程会转换至【可运行状态】,等待 CPU再次分配时间片,会导致我们前面讲到的上下文切换
  4. 阻塞状态
    1. 如果调用了阻塞API,如BIO读写文件,那么线程实际上不会用到CPU,不会分配CPU时间片,会导致上下文切换,进入【阻塞状态】
    2. 等待BIO操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
    3. 与【可运行状态】的区别是,只要操作系统一直不唤醒线程,调度器就一直不会考虑调度它们,CPU就一直不会分配时间片
  5. 终止状态,表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态
六种状态
  • 这是从 Java API 层面来描述的
  • 根据Thread.State 枚举,分为六种状态

在这里插入图片描述

新建状态运行状态(就绪状态, 运行中状态)、阻塞状态等待状态定时等待状态终止状态

  • NEW (新建状态) 线程刚被创建,但是还没有调用 start() 方法
  • RUNNABLE (运行状态) 当调用了 start() 方法之后,注意,Java API 层面的RUNNABLE 状态涵盖了操作系统层面的 【就绪状态】、【运行中状态】和【阻塞状态】(由于 BIO 导致的线程阻塞,在 Java 里无法区分,仍然认为 是可运行)
  • BLOCKED (阻塞状态)WAITING (等待状态)TIMED_WAITING(定时等待状态) 都是 Java API 层面对【阻塞状态】的细分,如sleep就位TIMED_WAITING, join为WAITING状态。后面会在状态转换一节详述。
  • TERMINATED (结束状态) 当线程代码运行结束
@Slf4j(topic = "c.TestState")
public class TestState {
    public static void main(String[] args) throws IOException {
        Thread t1 = new Thread("t1") {	// new 状态
            @Override
            public void run() {
                log.debug("running...");
            }
        };

        Thread t2 = new Thread("t2") {
            @Override
            public void run() {
                while(true) { // runnable 状态

                }
            }
        };
        t2.start();

        Thread t3 = new Thread("t3") {
            @Override
            public void run() {
                log.debug("running...");
            }
        };
        t3.start();

        Thread t4 = new Thread("t4") {
            @Override
            public void run() {
                synchronized (TestState.class) {
                    try {
                        Thread.sleep(1000000); // timed_waiting 显示阻塞状态
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        t4.start();

        Thread t5 = new Thread("t5") {
            @Override
            public void run() {
                try {
                    t2.join(); // waiting 状态
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };
        t5.start();

        Thread t6 = new Thread("t6") {
            @Override
            public void run() {
                synchronized (TestState.class) { // blocked 状态
                    try {
                        Thread.sleep(1000000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        };
        t6.start();

        try {
            Thread.sleep(500);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        log.debug("t1 state {}", t1.getState());
        log.debug("t2 state {}", t2.getState());
        log.debug("t3 state {}", t3.getState());
        log.debug("t4 state {}", t4.getState());
        log.debug("t5 state {}", t5.getState());
        log.debug("t6 state {}", t6.getState());
    }
}
关注
打赏
1661428283
查看更多评论
立即登录/注册

微信扫码登录

0.0388s