您当前的位置: 首页 >  算法

Dongguo丶

暂无认证

  • 2浏览

    0关注

    472博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

46相关度评分TF&IDF算法

Dongguo丶 发布时间:2021-11-13 08:23:59 ,浏览量:2

1、算法介绍

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度

Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法

1)Term frequency:

搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

搜索请求:hello world

doc1:hello you, and world is very good doc2:hello, how are you

doc1更相关

2)Inverse document frequency:

搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,就越不相关

搜索请求:hello world

doc1:hello, today is very good doc2:hi world, how are you

比如说,在index中有1万条document,hello这个单词在所有的document中,一共出现了1000次;world这个单词在所有的document中,一共出现了100次

doc2更相关

3)Field-length norm:field长度,field越长,相关度越弱

搜索请求:hello world

doc1:{ “title”: “hello article”, “content”: “babaaba 1万个单词” } doc2:{ “title”: “my article”, “content”: “blablabala 1万个单词,hi world” }

hello world在整个index中出现的次数是一样多的,但是doc1的hello是在title中,doc2的world是在content中。

doc1更相关,title field比content field短

2、_score是如何被计算出来的
GET /test_index/test_type/_search?explain
{
  "query": {
    "match": {
      "test_field": "test hello"
    }
  }
}

响应结果

{
  "took": 195,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0.8835016,
    "hits": [
      {
        "_shard": "[test_index][2]",
        "_node": "x0QR1D02RkmUyQw6uG_ayQ",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "6",
        "_score": 0.8835016,
        "_source": {
          "test_field": "test test"
        },
        "_explanation": {
          "value": 0.8835016,
          "description": "sum of:",
          "details": [
            {
              "value": 0.8835016,
              "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
              "details": [
                {
                  "value": 0.8835016,
                  "description": "score(doc=0,freq=2.0 = termFreq=2.0\n), product of:",
                  "details": [
                    {
                      "value": 0.6931472,
                      "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                      "details": [
                        {
                          "value": 1,
                          "description": "docFreq",
                          "details": []
                        },
                        {
                          "value": 2,
                          "description": "docCount",
                          "details": []
                        }
                      ]
                    },
                    {
                      "value": 1.2746234,
                      "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                      "details": [
                        {
                          "value": 2,
                          "description": "termFreq=2.0",
                          "details": []
                        },
                        {
                          "value": 1.2,
                          "description": "parameter k1",
                          "details": []
                        },
                        {
                          "value": 0.75,
                          "description": "parameter b",
                          "details": []
                        },
                        {
                          "value": 2,
                          "description": "avgFieldLength",
                          "details": []
                        },
                        {
                          "value": 2.56,
                          "description": "fieldLength",
                          "details": []
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[test_index][1]",
        "_node": "x0QR1D02RkmUyQw6uG_ayQ",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "8",
        "_score": 0.49191087,
        "_source": {
          "test_field": "test client 2"
        },
        "_explanation": {
          "value": 0.49191087,
          "description": "sum of:",
          "details": [
            {
              "value": 0.49191087,
              "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
              "details": [
                {
                  "value": 0.49191087,
                  "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                  "details": [
                    {
                      "value": 0.6931472,
                      "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                      "details": [
                        {
                          "value": 1,
                          "description": "docFreq",
                          "details": []
                        },
                        {
                          "value": 2,
                          "description": "docCount",
                          "details": []
                        }
                      ]
                    },
                    {
                      "value": 0.7096774,
                      "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                      "details": [
                        {
                          "value": 1,
                          "description": "termFreq=1.0",
                          "details": []
                        },
                        {
                          "value": 1.2,
                          "description": "parameter k1",
                          "details": []
                        },
                        {
                          "value": 0.75,
                          "description": "parameter b",
                          "details": []
                        },
                        {
                          "value": 2,
                          "description": "avgFieldLength",
                          "details": []
                        },
                        {
                          "value": 4,
                          "description": "fieldLength",
                          "details": []
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[test_index][3]",
        "_node": "x0QR1D02RkmUyQw6uG_ayQ",
        "_index": "test_index",
        "_type": "test_type",
        "_id": "7",
        "_score": 0.25316024,
        "_source": {
          "test_field": "test client 2"
        },
        "_explanation": {
          "value": 0.25316024,
          "description": "sum of:",
          "details": [
            {
              "value": 0.25316024,
              "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
              "details": [
                {
                  "value": 0.25316024,
                  "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
                  "details": [
                    {
                      "value": 0.2876821,
                      "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                      "details": [
                        {
                          "value": 1,
                          "description": "docFreq",
                          "details": []
                        },
                        {
                          "value": 1,
                          "description": "docCount",
                          "details": []
                        }
                      ]
                    },
                    {
                      "value": 0.88,
                      "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                      "details": [
                        {
                          "value": 1,
                          "description": "termFreq=1.0",
                          "details": []
                        },
                        {
                          "value": 1.2,
                          "description": "parameter k1",
                          "details": []
                        },
                        {
                          "value": 0.75,
                          "description": "parameter b",
                          "details": []
                        },
                        {
                          "value": 3,
                          "description": "avgFieldLength",
                          "details": []
                        },
                        {
                          "value": 4,
                          "description": "fieldLength",
                          "details": []
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}
3、分析一个document是如何被匹配上的
GET /test_index/test_type/6/_explain
{
  "query": {
    "match": {
      "test_field": "test hello"
    }
  }
}

响应结果

{
  "_index": "test_index",
  "_type": "test_type",
  "_id": "7",
  "matched": true,
  "explanation": {
    "value": 0.25316024,
    "description": "sum of:",
    "details": [
      {
        "value": 0.25316024,
        "description": "weight(test_field:test in 0) [PerFieldSimilarity], result of:",
        "details": [
          {
            "value": 0.25316024,
            "description": "score(doc=0,freq=1.0 = termFreq=1.0\n), product of:",
            "details": [
              {
                "value": 0.2876821,
                "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                "details": [
                  {
                    "value": 1,
                    "description": "docFreq",
                    "details": []
                  },
                  {
                    "value": 1,
                    "description": "docCount",
                    "details": []
                  }
                ]
              },
              {
                "value": 0.88,
                "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                "details": [
                  {
                    "value": 1,
                    "description": "termFreq=1.0",
                    "details": []
                  },
                  {
                    "value": 1.2,
                    "description": "parameter k1",
                    "details": []
                  },
                  {
                    "value": 0.75,
                    "description": "parameter b",
                    "details": []
                  },
                  {
                    "value": 3,
                    "description": "avgFieldLength",
                    "details": []
                  },
                  {
                    "value": 4,
                    "description": "fieldLength",
                    "details": []
                  }
                ]
              }
            ]
          }
        ]
      }
    ]
  }
}
关注
打赏
1638062488
查看更多评论
立即登录/注册

微信扫码登录

0.3714s