您当前的位置: 首页 >  搜索

Dongguo丶

暂无认证

  • 2浏览

    0关注

    472博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

14深度探秘搜索技术_基于multi_match+most fiels策略进行multi-field搜索

Dongguo丶 发布时间:2021-11-20 09:48:42 ,浏览量:2

从best-fields换成most-fields策略

best-fields策略,主要是说将某一个field匹配尽可能多的关键词的doc优先返回回来 most-fields策略,顾名思义,就是匹配词干的字段数越多,分数越高,优先返回,也可设置权重boost。

下面是简易公式(详细评分算法请参考:http://m.blog.csdn.net/article/details?id=50623948):

 下面是简易公式(详细评分算法请参考:http://m.blog.csdn.net/article/details?id=50623948):

   score=match_field1_score*boost+match_field2_score*boost+...match_fieldN_score*boost

在很多情况下,这种搜索很有效,但存在一个弱点,就是当文档中的字段冗余信息过多,将会影响那些文档比较精炼,而且意思较为全面的分值,

不能使用operator和minimum_should_match来减少相关性低的doc的长尾问题,简单的来说就是按term匹配的个数取胜

添加一个field : sub_title 使用english analyzer,sub_title 的子field: std使用standard analyzer

POST /forum/_mapping/article
{
  "properties": {
      "sub_title": { 
          "type":     "text",
          "analyzer": "english",
          "fields": {
              "std":   { 
                  "type":     "text",
                  "analyzer": "standard"
              }
          }
      }
  }
}

填充数据

POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"sub_title" : "learning more courses"} }
{ "update": { "_id": "2"} }
{ "doc" : {"sub_title" : "learned a lot of course"} }
{ "update": { "_id": "3"} }
{ "doc" : {"sub_title" : "we have a lot of fun"} }
{ "update": { "_id": "4"} }
{ "doc" : {"sub_title" : "both of them are good"} }
{ "update": { "_id": "5"} }
{ "doc" : {"sub_title" : "haha, hello world"} }

响应结果

{
  "took": 62,
  "errors": false,
  "items": [
    {
      "update": {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_version": 7,
        "result": "updated",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "status": 200
      }
    },
    {
      "update": {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_version": 11,
        "result": "updated",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "status": 200
      }
    },
    {
      "update": {
        "_index": "forum",
        "_type": "article",
        "_id": "3",
        "_version": 7,
        "result": "updated",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "status": 200
      }
    },
    {
      "update": {
        "_index": "forum",
        "_type": "article",
        "_id": "4",
        "_version": 11,
        "result": "updated",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "status": 200
      }
    },
    {
      "update": {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_version": 6,
        "result": "updated",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "status": 200
      }
    }
  ]
}

搜索sub_title 包含learning courses的doc

doc1包含courses ,其余doc均不包含learning courses关键字

GET /forum/article/_search
{
  "query": {
    "match": {
      "sub_title": "learning courses"
    }
  }
}

响应结果

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1.219939,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 1.219939,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_score": 0.5063205,
        "_source": {
          "articleID": "XHDK-A-1293-#fJ3",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "java",
            "hadoop"
          ],
          "tag_cnt": 2,
          "view_cnt": 30,
          "title": "this is java and elasticsearch blog",
          "content": "i like to write best elasticsearch article",
          "sub_title": "learning more courses"
        }
      }
    ]
  }
}

为什么doc2能被搜索出来,而且score还比doc1高?

我们可以看看learning coureses在enligsh analyzer下的分词

GET /forum/_analyze
{
  "field": "sub_title",
  "text":  "learning coureses"
}

响应结果

{
  "tokens": [
    {
      "token": "learn",
      "start_offset": 0,
      "end_offset": 8,
      "type": "",
      "position": 0
    },
    {
      "token": "coures",
      "start_offset": 9,
      "end_offset": 17,
      "type": "",
      "position": 1
    }
  ]
}

因为sub_title使用的是enligsh analyzer,将单词还原为其最基本的形态 learning --> learn learned --> learn courses --> course

sub_titile: learning coureses --> learn course

{ “doc” : {“sub_title” : “learned a lot of course”} },就排在了{ “doc” : {“sub_title” : “learning more courses”} }的前面

使用most-fields策略

在"sub_title", "sub_title.std"中匹配learning courses越多的doc优先返回

GET /forum/article/_search
{
   "query": {
        "multi_match": {
            "query":  "learning courses",
            "type":   "most_fields", 
            "fields": [ "sub_title", "sub_title.std" ]
        }
    }
}

响应结果

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1.219939,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 1.219939,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_score": 1.012641,
        "_source": {
          "articleID": "XHDK-A-1293-#fJ3",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "java",
            "hadoop"
          ],
          "tag_cnt": 2,
          "view_cnt": 30,
          "title": "this is java and elasticsearch blog",
          "content": "i like to write best elasticsearch article",
          "sub_title": "learning more courses"
        }
      }
    ]
  }
}

虽然仍然是doc2排在doc1的前面,但是发现doc1的score已经发生变化,这是因为在sub_title.std中doc2匹配了learning,提高了分数。

具体的分数怎么算出来的,很难说,因为这个东西很复杂, 还不只是TF/IDF算法。因为不同的query,不同的语法,都有不同的计算score的细节。

与best_fields的区别

(1)best_fields,是对多个field进行搜索,挑选某个field匹配度最高的那个分数,同时在多个query最高分相同的情况下,在一定程度上考虑其他query的分数。简单来说,你对多个field进行搜索,就想搜索到某一个field尽可能包含更多关键字的数据

优点:通过best_fields策略,以及综合考虑其他field,还有minimum_should_match支持,可以尽可能精准地将匹配的结果推送到最前面 缺点:除了那些精准匹配的结果,其他差不多大的结果,排序结果不是太均匀,没有什么区分度了

实际的例子:百度之类的搜索引擎,最匹配的到最前面,但是其他的就没什么区分度了

(2)most_fields,综合多个field一起进行搜索,尽可能多地让所有field的query参与到总分数的计算中来,此时就会是个大杂烩,出现类似best_fields案例最开始的那个结果,结果不一定精准,某一个document的一个field包含更多的关键字,但是因为其他document有更多field匹配到了,所以排在了前面;所以需要建立类似sub_title.std这样的field,尽可能让某一个field精准匹配query string,贡献更高的分数,将更精准匹配的数据排到前面

优点:将尽可能匹配更多field的结果推送到最前面,整个排序结果是比较均匀的 缺点:可能那些精准匹配的结果,无法推送到最前面

实际的例子:wiki,明显的most_fields策略,搜索结果比较均匀,但是的确要翻好几页才能找到最匹配的结果

关注
打赏
1638062488
查看更多评论
立即登录/注册

微信扫码登录

0.0418s