您当前的位置: 首页 >  数据分析

Dongguo丶

暂无认证

  • 1浏览

    0关注

    472博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

44深入聚合数据分析_bucket filter:统计牌品最近一个月的平均价格

Dongguo丶 发布时间:2021-11-27 15:19:01 ,浏览量:1

在聚合中进行过滤

查询品牌是长虹的电视,并且过滤售卖日期在150天内,然后统计平均价格,再过滤售卖日期在140天内,然后统计平均价格,再过滤售卖日期在130天内,然后统计平均价格.

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "长虹"
      }
    }
  },
  "aggs": {
    "recent_150d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-150d"
          }
        }
      },
      "aggs": {
        "recent_150d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_140d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "2017-03-19-140d"
          }
        }
      },
      "aggs": {
        "recent_140d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_130d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-130d"
          }
        }
      },
      "aggs": {
        "recent_130d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

aggs.filter,针对的是聚合去做的

如果放query里面的filter,是全局的,会对所有的数据都有影响

但是比如说,你要统计,长虹电视,最近1个月的平均值; 最近3个月的平均值; 最近6个月的平均值

bucket filter:是对不同的bucket下的aggs,进行filter

GET tvs/sales/_search

响应结果

{
  "took": 0,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 1,
    "hits": [
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYI",
        "_score": 1,
        "_source": {
          "price": 1200,
          "color": "绿色",
          "brand": "TCL",
          "sold_date": "2016-08-19"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYK",
        "_score": 1,
        "_source": {
          "price": 8000,
          "color": "红色",
          "brand": "三星",
          "sold_date": "2017-01-01"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYE",
        "_score": 1,
        "_source": {
          "price": 1000,
          "color": "红色",
          "brand": "长虹",
          "sold_date": "2016-10-28"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYF",
        "_score": 1,
        "_source": {
          "price": 2000,
          "color": "红色",
          "brand": "长虹",
          "sold_date": "2016-11-05"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYG",
        "_score": 1,
        "_source": {
          "price": 3000,
          "color": "绿色",
          "brand": "小米",
          "sold_date": "2016-05-18"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYJ",
        "_score": 1,
        "_source": {
          "price": 2000,
          "color": "红色",
          "brand": "长虹",
          "sold_date": "2016-11-05"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYH",
        "_score": 1,
        "_source": {
          "price": 1500,
          "color": "蓝色",
          "brand": "TCL",
          "sold_date": "2016-07-02"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "AX1PKYdDl-iNu-QvdWYL",
        "_score": 1,
        "_source": {
          "price": 2500,
          "color": "蓝色",
          "brand": "小米",
          "sold_date": "2017-02-12"
        }
      }
    ]
  }
}

由于之前的数据都是2017年的数据,这里可以改为过滤售卖日期在指定日期的N天内

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "长虹"
      }
    }
  },
  "aggs": {
    "recent_150d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "2017-03-19||-150d"
          }
        }
      },
      "aggs": {
        "recent_150d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_140d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "2017-03-19||-140d"
          }
        }
      },
      "aggs": {
        "recent_140d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_130d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "2017-03-19||-130d"
          }
        }
      },
      "aggs": {
        "recent_130d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

响应结果

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "recent_130d": {
      "doc_count": 0,
      "recent_130d_avg_price": {
        "value": null
      }
    },
    "recent_140d": {
      "doc_count": 2,
      "recent_140d_avg_price": {
        "value": 2000
      }
    },
    "recent_150d": {
      "doc_count": 3,
      "recent_150d_avg_price": {
        "value": 1666.6666666666667
      }
    }
  }
}
关注
打赏
1638062488
查看更多评论
立即登录/注册

微信扫码登录

0.0436s