import numpy as np
import operator
import os
import copy
from matplotlib.font_manager import FontProperties
from scipy.interpolate import lagrange
import random
import matplotlib.pyplot as plt
import math
np.set_printoptions(suppress=True)
# 把opt文件内的逗号变为空格
#数据在我的百度云数据库txt文件,及opt文件
np.set_printoptions(threshold=np.inf) #输出全部矩阵不带省略号
random.seed(10)
##########################################
data = np.loadtxt('txt//final37.txt')
# data = data[0:10000]#抽取一部分
x1 = data[:,5]#x起点坐标
x2 = data[:,9]#x终点坐标
y1 = data[:,6]#y起
y2 = data[:,10]#y起
z1 = data[:,4]#IDpart
z2 = data[:,8]#IDpart
diam = data[:,12]
s1 = [a1 for a1 in range(1,len(x1)-1) if z1[a1]==z2[a1-1]!=-1 or z1[a1]!= z2[a1-1]]#id相同不等于0,或id不同
# print(s1)
lx = []#x1,x2相同的部分组成的列表
lxqi = []
lxzg = []
for i1 in range(len(s1)-1):
b1 = x1[s1[i1]:s1[i1+1]]
b1 = b1.tolist()
b2 = x2[s1[i1+1]-1]#s1[i1]相当于a1
# b1 = b1 + [b2]#把与x2最后相连的一个数和x1拼接起来
b5 = z1[s1[i1]]#x,y起点id
b1qi_id = [b5]+b1 +[b2]
b6 = z2[s1[i1+1]-1]#x,y终点id
b1zg_id = [b6] + b1+[b2]
lx.append(b1)
lxqi.append(b1qi_id)
lxzg.append(b1zg_id)
###################################################
ly = []#y坐标以及管径大小
for i3 in range(len(s1)-1):
b3 = y1[s1[i3]:s1[i3+1]]
b3 = b3.tolist()
b4 = y2[s1[i3+1]-1]#y最后一个不相等的数
b3 = b3 + [b4]
dm = diam[s1[i3+1]-1]
b3 = b3 + [dm]#加上管径
ly.append(b3)
#####################################################
#带有起点id的x坐标与y坐标合并
for q1 in range(len(lxqi)):
for q2 in range(len(ly[q1])):
lxqi[q1].append(ly[q1][q2])
#带有终点id的x坐标与y坐标合并
for p1 in range(len(lxzg)):
for p2 in range(len(ly[p1])):
lxzg[p1].append(ly[p1][p2])
lxqi.sort(key=operator.itemgetter(0))#排序,只按照第一个索引大小排序
tou = lxqi
lxzg.sort(key=operator.itemgetter(0))
wei = lxzg
# #########################################
toudeng = []
weideng = []
for dwei in wei:
for i in range(len(tou)-1):
if dwei[0] ==tou[i][0] and dwei[0]==tou[i+1][0]:
toud = [dwei,tou[i],tou[i+1]]
toudeng.append(toud)
for dtou in tou:
for i in range(len(wei)-1):
if dtou[0] == wei[i][0] and dtou[0]==wei[i+1][0]:
weid = [wei[i],wei[i+1],dtou]
weideng.append(weid)
# ###################################################
datatoudeng = []
dataweideng = []
#去掉起点id
for i in range(len(toudeng)):
a = toudeng[i][0][1::]
b = toudeng[i][1][1::]
c = toudeng[i][2][1::]
d = [a]+[b]+[c]
datatoudeng.append(d)
for i in range(len(weideng)):
a1 = weideng[i][0][1::]
b1 = weideng[i][1][1::]
c1 = weideng[i][2][1::]
d1 = [a1]+[b1]+[c1]
dataweideng.append(d1)
# print(dataweideng)
####################################################################
#判断管径信息是否加进列表,若未加进则只为x,y坐标,为偶数
for i in range(len(dataweideng)):
a = dataweideng[i]
assert len(a[0])%2==1
assert len(a[1])%2==1
assert len(a[2])%2==1
for i in range(len(datatoudeng)):
a = datatoudeng[i]
assert len(a[0])%2==1
assert len(a[1])%2==1
assert len(a[2])%2==1
finaldata = datatoudeng +dataweideng#未插值
final = datatoudeng #所有分叉,头等分叉,尾等分叉
final = np.array(final)
#############################################################
#主分支最后两个数相等在这里把它们删除
for i in range(len(final)):
#处理主分支
len_zhu = len(final[i][0])
len_zhu_x = len_zhu//2
del final[i][0][len_zhu_x-1]
len_zhu = len(final[i][0])
del final[i][0][len_zhu-2]
final = final.tolist()
##############################################################
#计算两点之间距离
def get_len(x1,x2,y1,y2):
diff_x = (x1-x2)**2
diff_y = (y1-y2)**2
length = np.sqrt(diff_x+diff_y)
return length
#余弦定理计算角度公式
def cal_angle(a,b,c):
cos_angle = (a**2+b**2-c**2)/(2*a*b)
angle = np.arccos(cos_angle)
angle = angle*180/np.pi
return angle
###############################################################################
def Manage_gen(gen_imgs):
#gen_imgs一个维度为(-1,3,60)的数组,头部分支的尾部,与左右分支的头部分开了
#目的把头的尾部,加入左右分支头部,并保证,维度不变
gen_imgs = gen_imgs[:,:,0:61]
finaldata = gen_imgs.tolist()
final = []
for i in range(len(finaldata)):
zhu = finaldata[i][0]
zuo = finaldata[i][1]
you = finaldata[i][2]
#单独分开x,y,列表
zhu_x = zhu[0:30]
zhu_y = zhu[30:60]
zhu_diam = [zhu[-1]]
zuo_x = zuo[0:30]
zuo_y = zuo[30:60]
zuo_diam = [zuo[-1]]
you_x = you[0:30]
you_y = you[30:60]
you_diam = [you[-1]]
############################################
#真实数据主分支最后两个基本相等,所以生成数据也是,这样计算角度时,就应该计算最后一个和倒数第三个点
#为了让主分支最后一个加在左右分支的头部,此处先去掉左右分支的最后一个点,因为端点插入的值都是相等的,所以去掉影响不大
#然后,再将主分支的尾部,加入左右分支头部,这样,就保证了维度不变
#去除左右分支尾部一个数
del zuo_x[-1]
del zuo_y[-1]
del you_x[-1]
del you_y[-1]
#在左右分支的头部插入主分支的尾部
zuo_x.insert(0,zhu_x[-1])
zuo_y.insert(0,zhu_y[-1])
you_x.insert(0,zhu_x[-1])
you_y.insert(0,zhu_y[-1])
zhu_x.extend(zhu_y)
zuo_x.extend(zuo_y)
you_x.extend(you_y)
zhu_x.extend(zhu_diam)
zuo_x.extend(zuo_diam)
you_x.extend(you_diam)
fencha = [zhu_x] +[zuo_x] + [you_x]
final.append(fencha)
final = np.array(final)#一个维度为(-1,3,61)的数组
return final
#计算端点长度
def get_duandian_len(zhu_x,zhu_y,zuo_x,zuo_y,you_x,you_y):
#主分支头尾坐标
zhu_x_tou = zhu_x[0]
zhu_y_tou = zhu_y[0]
zhu_x_wei = zhu_x[-1]
zhu_y_wei = zhu_y[-1]
#左分支头尾坐标
zuo_x_tou = zuo_x[0]
zuo_y_tou = zuo_y[0]
zuo_x_wei = zuo_x[-1]
zuo_y_wei = zuo_y[-1]
#右分支头尾坐标
you_x_tou = you_x[0]
you_y_tou = you_y[0]
you_x_wei = you_x[-1]
you_y_wei = you_y[-1]
#主分支端点长
zhu_duan_len = get_len(zhu_x_tou,zhu_x_wei,zhu_y_tou,zhu_y_wei)
#左分支端点长
zuo_duan_len = get_len(zuo_x_tou,zuo_x_wei,zuo_y_tou,zuo_y_wei)
#右分支端点长
you_duan_len = get_len(you_x_tou,you_x_wei,you_y_tou,you_y_wei)
return zhu_duan_len,zuo_duan_len,you_duan_len
#计算分支总长度
def get_total_len(zhu_x,zhu_y,zuo_x,zuo_y,you_x,you_y):
zhu_lin_list = []
zuo_lin_list = []
you_lin_list = []
for i in range(1,len(zhu_x)):
#相邻点大小相差1e-5可以认为他们是插入点,距离为0
threshold = 0
zhu_lin_len = get_len(zhu_x[i-1],zhu_x[i],zhu_y[i-1],zhu_y[i])
if zhu_lin_len< threshold:
zhu_lin_len = 0
zuo_lin_len = get_len(zuo_x[i-1],zuo_x[i],zuo_y[i-1],zuo_y[i])
if zuo_lin_len< threshold:
zuo_lin_len = 0
you_lin_len = get_len(you_x[i-1],you_x[i],you_y[i-1],you_y[i])
if you_lin_len< threshold:
you_lin_len = 0
zhu_lin_list.append(zhu_lin_len)
zuo_lin_list.append(zuo_lin_len)
you_lin_list.append(you_lin_len)
zhu_total_len = 0
for file in zhu_lin_list:
zhu_total_len += file
zuo_total_len = 0
for file in zuo_lin_list:
zuo_total_len += file
you_total_len = 0
for file in you_lin_list:
you_total_len += file
return zhu_total_len,zuo_total_len,you_total_len
#计算角度
def get_angle(zhu_x,zhu_y,zuo_x,zuo_y,you_x,you_y):
#主分支上两个尾部点
zhu_x_a = zhu_x[-2]
zhu_y_a = zhu_y[-2]
zhu_x_b = zhu_x[-1]
zhu_y_b = zhu_y[-1]
#左分支上两个头部点
zuo_x_a = zuo_x[0]
zuo_y_a = zuo_y[0]
zuo_x_b = zuo_x[1]
zuo_y_b = zuo_y[1]
#右分支上两个头部点
you_x_a = you_x[0]
you_y_a = you_y[0]
you_x_b = you_x[1]
you_y_b = you_y[1]
#zhu_x_b,zuo_x_a,you_x_a应该相等
#每个端点两点长度
zhu_ab_len = get_len(zhu_x_a,zhu_x_b,zhu_y_a,zhu_y_b)
zuo_ab_len = get_len(zuo_x_a,zuo_x_b,zuo_y_a,zuo_y_b)
you_ab_len = get_len(you_x_a,you_x_b,you_y_a,you_y_b)
zhu_zuo_len = get_len(zhu_x_a,zuo_x_b,zhu_y_a,zuo_y_b)
zhu_you_len = get_len(zhu_x_a,you_x_b,zhu_y_a,you_y_b)
zuo_you_len = get_len(zuo_x_b,you_x_b,zuo_y_b,you_y_b)
zhu_zuo_angle = cal_angle(zhu_ab_len,zuo_ab_len,zhu_zuo_len)
zhu_you_angle = cal_angle(zhu_ab_len,you_ab_len,zhu_you_len)
zuo_you_angle = cal_angle(zuo_ab_len,you_ab_len,zuo_you_len)
zong_angle = zhu_zuo_angle + zhu_you_angle + zuo_you_angle
return zhu_zuo_angle,zhu_you_angle,zuo_you_angle,zong_angle
#计算卷曲度
def get_juanqu(zhu_duan_len,zuo_duan_len,you_duan_len,zhu_total_len,zuo_total_len,you_total_len):
zhu_juanqu = zhu_total_len / zhu_duan_len
zuo_juanqu = zuo_total_len / zuo_duan_len
you_juanqu = you_total_len / you_duan_len
return zhu_juanqu,zuo_juanqu,you_juanqu
######################################################################
#插值方法三:在相邻两点坐标距离最大的地方插值
finaldata = []
for i in range(len(final)):
zhu = final[i][0]
zuo = final[i][1]
you = final[i][2]
zhu_diam = [zhu[-1]]
zuo_diam = [zuo[-1]]
you_diam = [you[-1]]
zhu_x = zhu[0:len(zhu)//2]
zuo_x = zuo[0:len(zuo)//2]
you_x = you[0:len(you)//2]
zhu_y = zhu[len(zhu)//2:(len(zhu)-1)]
zuo_y = zuo[len(zuo)//2:(len(zuo)-1)]
you_y = you[len(you)//2:(len(you)-1)]
# plt.plot(zhu_x,zhu_y,color='red')
# plt.plot(zuo_x,zuo_y,color='blue')
# plt.plot(you_x,you_y,color='green')
while len(zhu_x)< 30:
zhu_lin_list = []
for j in range(1,len(zhu_x)):
zhu_lin_len = get_len(zhu_x[j-1],zhu_x[j],zhu_y[j-1],zhu_y[j])
zhu_lin_list.append(zhu_lin_len)
zhu_max_index = zhu_lin_list.index(max(zhu_lin_list)) #j-1
#不处理的话会出现nan
if abs(zhu_x[zhu_max_index]-zhu_x[zhu_max_index+1])==0:
zhu_x[zhu_max_index+1] = zhu_x[zhu_max_index+1] +1
zhu_insert_x = np.linspace(zhu_x[zhu_max_index],zhu_x[zhu_max_index+1],3)
#插入的点
zhu_insert_x = zhu_insert_x[1]
f_zhu = lagrange([zhu_x[zhu_max_index],zhu_x[zhu_max_index+1]],[zhu_y[zhu_max_index],zhu_y[zhu_max_index+1]])
zhu_insert_y = f_zhu(zhu_insert_x)
zhu_x.insert(zhu_max_index+1,zhu_insert_x)
zhu_y.insert(zhu_max_index+1,zhu_insert_y)
while len(zuo_x) < 31:
zuo_lin_list = []
for j in range(1,len(zuo_x)):
zuo_lin_len = get_len(zuo_x[j-1],zuo_x[j],zuo_y[j-1],zuo_y[j])
zuo_lin_list.append(zuo_lin_len)
zuo_max_index = zuo_lin_list.index(max(zuo_lin_list)) #对应j-1
if abs(zuo_x[zuo_max_index]-zuo_x[zuo_max_index+1])==0:
zuo_x[zuo_max_index+1] = zuo_x[zuo_max_index+1] + 1
zuo_insert_x = np.linspace(zuo_x[zuo_max_index],zuo_x[zuo_max_index+1],3)
# #插入的点
zuo_insert_x = zuo_insert_x[1]
f_zuo = lagrange([zuo_x[zuo_max_index],zuo_x[zuo_max_index+1]],[zuo_y[zuo_max_index],zuo_y[zuo_max_index+1]])
zuo_insert_y = f_zuo(zuo_insert_x)
zuo_x.insert(zuo_max_index+1,zuo_insert_x)
zuo_y.insert(zuo_max_index+1,zuo_insert_y)
while len(you_x) < 31:
you_lin_list = []
for j in range(1,len(you_x)):
#计算相邻两坐标的距离
you_lin_len = get_len(you_x[j-1],you_x[j],you_y[j-1],you_y[j])
#添加进列表中
you_lin_list.append(you_lin_len)
#计算距离最大的值对应的索引,对应x坐标的j-1和j之间的距离,最大
you_max_index = you_lin_list.index(max(you_lin_list)) #对应j-1
#然后,在两个最大点之间,平均插入一个数,作为插入x点
if abs(you_x[you_max_index]-you_x[you_max_index+1]) == 0:
you_x[you_max_index+1] = you_x[you_max_index+1] + 1
you_insert_x = np.linspace(you_x[you_max_index],you_x[you_max_index+1],3)
#插入的点
you_insert_x = you_insert_x[1]
#拉格朗日计算直线方程
f_you = lagrange([you_x[you_max_index],you_x[you_max_index+1]],[you_y[you_max_index],you_y[you_max_index+1]])
#插入的y点
you_insert_y = f_you(you_insert_x)
#将求得的x,y点插入对应位置
you_x.insert(you_max_index+1,you_insert_x)
you_y.insert(you_max_index+1,you_insert_y)
################################################
#可视化插值点
# plt.scatter(zhu_x,zhu_y,marker='*',color='red')
# plt.scatter(zuo_x,zuo_y,marker='*',color='blue')
# plt.scatter(you_x,you_y,marker='*',color='green')
# plt.show()
#####################################################################
#主分支最后两个相等的前面已经删除,现在删除左右分支第一个
zuo_x = zuo_x[1::]
you_x = you_x[1::]
zuo_y = zuo_y[1::]
you_y = you_y[1::]
#这里将x和y列表再接起来
zhu_xy = zhu_x + zhu_y
zuo_xy = zuo_x + zuo_y
you_xy = you_x + you_y
#这里再将坐标点与管径接起来
zhu = zhu_xy + zhu_diam
zuo = zuo_xy + zuo_diam
you = you_xy + you_diam
fencha = [zhu] + [zuo] + [you]
finaldata.append(fencha)
final = np.array(finaldata) #数据维度为(-1,3,61)
# data = final.reshape(-1,3,61)
# for i in range(len(data)):
# plt.scatter(data[i][0][0:30],data[i][0][30:60],marker='*',color='red')
# plt.scatter(data[i][1][0:30],data[i][1][30:60],marker='*',color='blue')
# plt.scatter(data[i][2][0:30],data[i][2][30:60],marker='*',color='green')
#
# plt.plot(data[i][0][0:30],data[i][0][30:60],color='red')
# plt.plot(data[i][1][0:30],data[i][1][30:60],color='blue')
# plt.plot(data[i][2][0:30],data[i][2][30:60],color='green')
# plt.show()
##################################################################
def rotate(angle,valuex,valuey):
rotatex = math.cos(angle)*valuex -math.sin(angle)*valuey
rotatey = math.cos(angle)*valuey + math.sin(angle)* valuex
return rotatex,rotatey
#测试一张图片
# final = final[0:1,:,:]
final1 = []
for i in range(len(final)):
x = final[i,:,0:30]
y = final[i,:,30:60]
diam = final[i,:,-1]
diam = diam.reshape(3,1)
rotatedata = []
for j in range(0,360,2): #每隔3,30度旋转一次
x1,y1 = rotate(j,x,y)
x1_mean = np.mean(x1)
y1_mean = np.mean(y1)
cha_mean = x1_mean-y1_mean
if(cha_mean>0):
y1 += abs(cha_mean)
else:
x1 += abs(cha_mean)
x1_min = np.min(x1)
y1_min = np.min(y1)
x1 = x1 - x1_min
y1 = y1 - y1_min
rotate_final = np.concatenate((x1,y1,diam),axis=1)
rotatedata.append(rotate_final)
final1.append(rotatedata)
finaldata = []
for file in final1:
for data in file:
finaldata.append(data)
final = np.array(finaldata)
#####################################################
finalxy = final[:,:,0:60]
finaldiam = final[:,:,-1]
finaldiam = finaldiam.reshape(-1,3,1)
finalxy_min = np.min(finalxy)
finalxy_max = np.max(finalxy)
final1 = []
final2 = []
final3 = []
final4 = []
for i in range(len(final)):
final_max = np.max(final[i])
if final_max
1636984416
查看更多评论