相关函数说明
OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化 CURRENT ROW:当前行 n PRECEDING:往前n行数据 n FOLLOWING:往后n行数据 UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING表示到后面的终点 LAG(col,n):往前第n行数据 LEAD(col,n):往后第n行数据 NTILE(n):把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。注意:n必须为int类型。
一、案例一 1.1、用户信息表样例数据1,nv,18,吃棒棒糖
2,gong,18,养金鱼
3,nv,20,做头发
4,ry,18,自high
5,gong,18,养乌龟
6,gong,19,养鸭子
7,gong,38,养鸡鸡
8,nv,22,做头发
9,nv,23,买衣服
10,ry,28,下围棋
11,ry,18,跳舞
1.2、表
create table userinfo(
id int,
sex string,
age int,
hobby string
)
row format delimited fields terminated by ',';
1.3、加载数据
load data local inpath '/uardata/hivetest/userinfo' into table userinfo;
1.4、每种性别人群中,年龄最大的两个人
1.4.1、使用开窗函数
select id, sex, age, hobby ,row_number() over(partition by sex order by age desc) as od from userinfo ;
首先将数据存入临时表
create table userinfo_tmp as select id, sex, age, hobby ,row_number() over(partition by sex order by age desc) as od from userinfo ;
然后通过od查询最大两人
hive> select * from userinfo_tmp where od < 3;
OK
7 gong 38 养鸡鸡 1
6 gong 19 养鸭子 2
9 nv 23 买衣服 1
8 nv 22 做头发 2
10 ry 28 下围棋 1
4 ry 18 自high 2
Time taken: 0.198 seconds, Fetched: 6 row(s)
hive>
二、案例二
数据准备:name,orderdate,cost
jack,2017-01-01,10
tony,2017-01-02,15
jack,2017-02-03,23
tony,2017-01-04,29
jack,2017-01-05,46
jack,2017-04-06,42
tony,2017-01-07,50
jack,2017-01-08,55
mart,2017-04-08,62
mart,2017-04-09,68
neil,2017-05-10,12
mart,2017-04-11,75
neil,2017-06-12,80
mart,2017-04-13,94
3.需求
(1)查询在2017年4月份购买过的顾客及总人数
(2)查询顾客的购买明细及月购买总额
(3)上述的场景,要将cost按照日期进行累加
(4)查询顾客上次的购买时间
(5)查询前20%时间的订单信息
4.创建本地business.txt,导入数据
[root@chb2 hivetest]# vi business.txt
5.创建hive表并导入数据
create table business(
name string,
orderdate string,
cost int
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
load data local inpath "/uardata1/hivetest/business.txt" into table business;
6.按需求查询数据
(1)查询在2017年4月份购买过的顾客及总人数
select name,count(*) over ()
from business
where substring(orderdate,1,7) = '2017-04'
group by name;
(2)查询顾客的购买明细及月购买总额
select name,orderdate,cost,sum(cost) over(partition by month(orderdate)) from
business;
(3)上述的场景,要将cost按照日期进行累加
select name,orderdate,cost,
sum(cost) over() as sample1,--所有行相加
sum(cost) over(partition by name) as sample2,--按name分组,组内数据相加
sum(cost) over(partition by name order by orderdate) as sample3,--按name分组,组内数据累加
sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row ) as sample4 ,--和sample3一样,由起点到当前行的聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and current row) as sample5, --当前行和前面一行做聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING AND 1 FOLLOWING ) as sample6,--当前行和前边一行及后面一行
sum(cost) over(partition by name order by orderdate rows between current row and UNBOUNDED FOLLOWING ) as sample7 --当前行及后面所有行
from business;
(4)查看顾客上次的购买时间
select name,orderdate,cost,
lag(orderdate,1,'1900-01-01') over(partition by name order by orderdate ) as time1, lag(orderdate,2) over (partition by name order by orderdate) as time2
from business;
(5)查询前20%时间的订单信息
select * from (
select name,orderdate,cost, ntile(5) over(order by orderdate) sorted
from business
) t
where sorted = 1;
三、Rank
3.1、函数说明
- RANK() 排序相同时会重复,总数不会变
- DENSE_RANK() 排序相同时会重复,总数会减少
- ROW_NUMBER() 会根据顺序计算
1、准备数据
name subject score
孙悟空 语文 87
孙悟空 数学 95
孙悟空 英语 68
大海 语文 94
大海 数学 56
大海 英语 84
宋宋 语文 64
宋宋 数学 86
宋宋 英语 84
婷婷 语文 65
婷婷 数学 85
婷婷 英语 78
2、需求: 计算每门学科成绩排名。
3、创建表并导入数据
create table score(
name string,
subject string,
score int)
row format delimited fields terminated by "\t";
load data local inpath '/uardata1/hivetest/score.txt' into table score;
4、按照需求查询数据
select name,
subject,
score,
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
from score;