Broadcast是分布式的数据共享,由BroadcastManager负责管理其创建或销毁。Broadcast一般用于处理共享的配置文件、通用Dataset、常用数据结构
1.1、创建通过SparkContext.broadcast广播一个Broadcast, 实际调用的是SparkEnv的BroadManager来创建
/**
* Broadcast a read-only variable to the cluster, returning a
* [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.
* The variable will be sent to each cluster only once.
*/
def broadcast[T: ClassTag](value: T): Broadcast[T] = {
assertNotStopped()
require(!classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass),
"Can not directly broadcast RDDs; instead, call collect() and broadcast the result.")
//使用SparkEnv.broadcastManager创建Broadcast
val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
val callSite = getCallSite
logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
cleaner.foreach(_.registerBroadcastForCleanup(bc))
bc
}
1.1.1、在SparkEnv中创建BroadcastManager,
// 此处只是声明, 只有调用initialize, 才会生效
val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
1.1.2、initialize
// Called by SparkContext or Executor before using Broadcast
private def initialize() {
synchronized {
if (!initialized) {
broadcastFactory = new TorrentBroadcastFactory
broadcastFactory.initialize(isDriver, conf, securityManager)
initialized = true
}
}
}
1.1.3、 BoradcastManager操作BradCast实际是代理BroadcastFactory, 此处使用工厂模式
def stop() {
broadcastFactory.stop()
}
private val nextBroadcastId = new AtomicLong(0)
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean): Broadcast[T] = {
broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
}
def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
}