- 1 本讲摘要
- 3 六步法搭建网络
- 4 搭建网络八股class
- 5 MINIST数据集
- 6 FASHION数据集
Tensorflow2.0课程 Tensorflow2.0第一讲 Tensorflow2.0第二讲 Tensorflow2.0第三讲 Tensorflow2.0第四讲 Tensorflow2.0第五讲 Tensorflow2.0第六讲
1 本讲摘要(1)本讲目标:使用八股搭建神经网络 (2)摘要 • 神经网络搭建八股 • Iris代码复现 • MNIST数据集 • 训练 MNIST 数据集 • Fashion数据集
3 六步法搭建网络用Tensorflow的API:tf.keras搭建网络八股 (1)六步法
imort
train,test
# 搭建网络结构
```python
model = tf.keras.models.Sequential
# 配置训练方法,优化器、参数、评测指标
model.compile
#执行训练过程,告知训练集和测试集的输入特征和标签
model.fit
#打印网络的结构和参数统计
model.summary
(2)网络结构
model = tf.keras.models.Sequential([网络结构])#描述各层网络
网络结构举例: 拉直层
tf.keras.layers.Flatten()
全连接层
tf.keras.layers.Dense(神经元个数,activation = "激活函数"
, kernel_regularizer = 哪种正则化)
activation(字符串给出)可选relu 、softmax sigmoid tanh
kernel_regularizer 可选tf.keras.regularizers.l1()、tf.keras.regularizers.l2()
卷积层:
tf.keras.layers.Conv2D(filters = 卷积和个数,kernel_size = 卷积核尺寸,
strides = 卷积步长,padding = "valid" or "same")
LSTM 层
tf.keras.layers.LSTM()
model.compile(optimizer = 优化器,
loss = 损失函数
metrics = ["准确率"])
Optimizer可选
"sgd" or tf.keras.optimizer.SGD(lr = 学习率,momentum = 动量参数)
"adagrad" of or tf.keras.optimizer.Adagrad(lr = 学习率)
"adadelta" or or tf.keras.optimizer.Adadelta(lr = 学习率)
"adam" or or tf.keras.optimizer.Adam(lr = 学习率,beta_1 = 0.9,beta_2 = 0.999)
loss可选
"mse" or or tf.keras.losses.MeanSquaredError()
#from_logics,询问是否是原始输出,没有经过概率分布的输出。如果神经网络预测结果输出前有经过概率分布则是false,反之
"sparse_categorical_crossentropy " or or tf.keras.losses.SparseCategoricalCrossentropy(from_logics=False)
Metrics可选
# metrics告知网络评测指标
"accuracy": y_和y都是数值,如y_=[1] y = [1]
"categorical_accuracy" :y_和y都是独热码(概率分布),如y_=[1] y = [0.256,0.695,0.048]
"sparse_categocial_accuracy":y_是数值,y是独热码(概率分布),如y_=[1] 输出结果是概率分布y = [0.256,0.695,0.048]
model.fit
model.fit(训练机的输入特征,训练机的标签
batch_size = ,epochs = ,
validation_data = (测试集的输入特征,测试集的标签),
validation_split = 从训练集划分多少比例给测试集,
validation_freq = 多少次epoch 测试一次)
model.summary() 打印网络结构参数的统计
(3)Demo
import tensorflow as tf
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
# 实现数据集的乱序
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
#搭建网络模型
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])
# 选择训练参数
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),# 因为神经网络最后一层用了softmax
metrics=['sparse_categorical_accuracy'])#因为输出是概率分布
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()
4 搭建网络八股class
六步法
import
train,test
class MyModel(Model) model = MyModel
model.compile
model.fit
model.summary
class封装神经网络的结构
class MyModel(Model)
def __init__(self):# 定义所需网络结构块
super(MyModel,self).__init__()
定义网络结构块
def call(self,x)# 写出前向传播
调用网络结构块,实现前向传播
return y
model = MyModel()
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
class IrisModel(Model):
def __init__(self):
super(IrisModel, self).__init__()
self.d1 = Dense(3, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2())
def call(self, x):
y = self.d1(x)
return y
model = IrisModel()
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
modelfit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()
5 MINIST数据集
(1)MINIST数据集: 提供6万张图片用于训练,提供1万张用于测试 (2)导入数据集
mnist = tf.keras.datasets.mnist
(x_train,y_train), (x_test,y_test) = mnist.load_data()
(3)作为输入特征,输入神经网络时,将数据拉伸为一维数据:
tf.keras.layers.Flatten()
(4)绘制灰度图,可视化
plt.imshow(x_train[0],cmap ='gary')
plt.show()
print("x_train[0]:\n",x_train[0])#打印第一个输入特征
print("y_train[0]:",y_train[0])#打印第一个输入label
print("x_test.shape:",x_test,shape)
(5)Demo
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#归一化
x_train, x_test = x_train / 255.0, x_test / 255.0
# 定义网络结构
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
# 配置训练方法
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])#因为输出是概率分布
# 每迭代一次训练集执行一次测试机的评测
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
6 FASHION数据集
(1)提供6万28*28张图片衣服裤子等的图片和标签.用于训练,提供1万张用于测试。十个分类 • 0 T恤T-shirt/top • 1 裤子Trouser • 2 套头衫Pullover • 3 连衣裙Dress • 4 外套coat • 5 凉鞋Scandal • 6 衬衫Shirt • 7 运动鞋Sneaker • 8 包Bag • 9 靴子Ankle boot (2)导入数据集
fashion = tf.keras.datasets.fashion_mnist
(x_train,y_train),(x_test,y_test) = fashion.load_data()
(3)Demo
import tensorflow as tf
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train),(x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()