1 相关概念
(1)反向传播:训练模型参数,在所有参数上用梯度下降,使NN模型在训练数据上的损失函数最小。 (2)损失函数(loss):预测值(y)与已知答案(y_)的差距 (3)均方误差MSE
loss = tf.reduce_mean(tf.square(y_-y))
(4)反向传播训练方法:以减小loss值为优化目标 (5)学习率:决定参数每次更新的幅度
2 神经网络实现过程(1)准备数据集,提取特征,作为输入喂给神经网络 (2)搭建NN结构,从输入到输出(先搭建计算图,再用会话执行) (3)大量特征数据喂给NN,迭代优化NN参数 (4)使用训练好的模型预测和分类
3 代码实现#coding:utf-8
#0导入模块,生成模拟数据集。
#tensorflow学习笔记(北京大学) tf3_6.py 完全解析神经网络搭建学习
#QQ群:476842922(欢迎加群讨论学习
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8
SEED = 23455
rdm = np.random.RandomState(SEED)
X = rdm.rand(32,2)
Y_ = [[int(x0 + x1
关注
打赏
热门博文
- 【文献汇总】2019-2021最新应用深度学习到OFDM通信系统中的论文汇总(实时更新)
- 【金融量化】电话口试-智力题
- 【数据挖掘】2022年2023届秋招爱玩特智能量化研究员岗 笔试题
- 【Leetcode刷题Python】1467. 两个盒子中球的颜色数相同的概率
- 【Leetcode刷题Python】50. Pow(x, n)
- 【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
- 【Leetcode刷题Python】73. 矩阵置零
- 【Leetcode刷题Python】LeetCode 478. 在圆内随机生成点
- 【Leetcode刷题Python】 LeetCode 2038. 如果相邻两个颜色均相同则删除当前颜色
- 【数据挖掘】2022年2023届秋招Kanaries雾角科技算法岗 笔试题