- 1 理论
- 2 单模光纤的二维分布
- 3 单模光纤的三维分布
多模光纤的分析参考本人另一篇博客 【光波电子学】MATLAB绘制光纤中线性偏振模式LP之多模光纤的电场分布(光斑)
1 理论光纤中,在弱导近似下,由
H
E
l
+
1
,
m
HE_{l+1,m}
HEl+1,m模和
E
H
l
−
1
,
m
EH_{l-1,m}
EHl−1,m模组合的模式是一个线性偏振模式英文是(linear polorized mode)简称为
L
P
l
m
LP_{lm}
LPlm。根据资料以下是
L
P
l
m
LP_{lm}
LPlm模和导出或构成它的模式、简并度及模式特征方程。
单模光纤中
L
P
01
LP_{01}
LP01模在纤芯和包层的归一化电场分布公式表示为
E
(
R
a
)
=
{
J
0
(
R
R
a
)
R
a
≤
1
J
0
(
U
)
K
0
(
W
R
a
)
K
0
(
W
)
R
a
>
1
E(R_a) = \begin {cases} J_0(RR_a) &R_a \leq 1 \\ J_0(U) \frac{K_0(WR_a)}{K_0(W)} & R_a >1 \end {cases}
E(Ra)={J0(RRa)J0(U)K0(W)K0(WRa)Ra≤1Ra>1 利用此关系,既可得到归一化的
L
P
01
LP_{01}
LP01模在纤芯和包层区的电场分布曲线 根据求解的
L
P
01
LP_{01}
LP01的U、V、W 关系的得到以下表格,当V = 2.4000时,U= 1.6453, W= 1.7473
V =2.4000;
U =1.6453;
W = 1.7473;
Npoint = 501;
R1 = linspace(-5,5,Npoint);
R2 = linspace(-5,5,Npoint);
X= meshgrid(R1,R2);
Y= meshgrid(R2,R1);
Y = Y';
R = sqrt(X.^2+Y.^2);
% Theta = atan(Y./(X+eps));
% 光纤中光芯光场分布
E1 = besselj(0,U*R);
I1 = E1.^2;
% 光纤中包层的光场分布
E2 = besselj(0,U).*besselk(0,W.*R)./besselk(0,W);
I2 = E2.^2;
I = I1 ;
pos = find(R>=1);
I(pos) = I2(pos);
% 作图
imagesc(R1,R2,I,[0 1]);
colormap(gray);
colorbar
xlabel('x')
ylabel('y')
zlabel('z')
zlabel('z')
clear
close all
V =2.4000;
U =1.6453;
W = 1.7473;
Npoint = 201;
R1 = linspace(0,1,Npoint);
R2 = linspace(1,5,Npoint);
Theta1 = linspace(0,2*pi,Npoint);
Theta2 = linspace(0,2*pi,Npoint);
E1 = zeros(Npoint,Npoint);
E2 = zeros(Npoint,Npoint);
I1 = E1;
I2 = E2;
for i = 1:Npoint
E1(:,i) = besselj(0,U*R1);
I1(:,i) = E1(:,i).^2;
end
for i = 1:Npoint
E2(:,i) = besselj(0,U).*besselk(0,W.*R2)./besselk(0,W);
I2(:,i) = E2(:,i).^2;
end
[Theta1 R1] = meshgrid(Theta1,R1);
[Theta2 R2] = meshgrid(Theta2,R2);
[X1 Y1] = pol2cart(Theta1,R1);
[X2 Y2] = pol2cart(Theta2,R2);
mesh(X1,Y1,I1)
hold on
mesh(X2,Y2,I2)
colorbar
xlabel('x')
ylabel('y')
zlabel('z')