- 博文链接
- 1 Txt转为CSV
- 2 宏观查看数据
- 3 查看缺失值
- 4 查看异常值
- 5 查看分布
- 6 查看相关性
- 7 特征类别统计
初赛: 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】数据分析及可视化
【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】问题一 Baseline 和数据
【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】问题二 思路和python实现
【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】4 问题三 思路和数据及参考资料
【Mathorcup杯大数据挑战赛复赛 B题 二手车估价】思路及Python实现
其实可以不用转,直接可以读取txt文件
2 宏观查看数据
读取数据
train = pd.read_table('file1.txt')
test = pd.read_table('file2.txt')
train.info()
RangeIndex: 30000 entries, 0 to 29999 Data columns (total 36 columns):
Column Non-Null Count Dtype
0 carid 30000 non-null int64 1 tradeTime 30000 non-null object 2 brand 30000 non-null int64 3 serial 30000 non-null int64 4 model 30000 non-null int64 5 mileage 30000 non-null float64 6 color 30000 non-null int64 7 cityId 30000 non-null int64 8 carCode 29991 non-null float64 9 transferCount 30000 non-null int64 10 seatings 30000 non-null int64 11 registerDate 30000 non-null object 12 licenseDate 30000 non-null object 13 country 26243 non-null float64 14 maketype 26359 non-null float64 15 modelyear 29688 non-null float64 16 displacement 30000 non-null float64 17 gearbox 29999 non-null float64 18 oiltype 30000 non-null int64 19 newprice 30000 non-null float64 20 anonymousFeature1 28418 non-null float64 21 anonymousFeature2 30000 non-null int64 22 anonymousFeature3 30000 non-null int64 23 anonymousFeature4 17892 non-null float64 24 anonymousFeature5 30000 non-null int64 25 anonymousFeature6 30000 non-null int64 26 anonymousFeature7 11956 non-null object 27 anonymousFeature8 26225 non-null float64 28 anonymousFeature9 26256 non-null float64 29 anonymousFeature10 23759 non-null float64 30 anonymousFeature11 29539 non-null object 31 anonymousFeature12 30000 non-null object 32 anonymousFeature13 28381 non-null float64 33 anonymousFeature14 30000 non-null int64 34 anonymousFeature15 2420 non-null object 35 price 30000 non-null float64 dtypes: float64(15), int64(14), object(7)
训练集有3W行数据
test.info()
Data columns (total 35 columns): #Column Non-Null Count Dtype
0 carid 5000 non-null int64 1 tradeTime 5000 non-null object 2 brand 5000 non-null int64 3 serial 5000 non-null int64 4 model 5000 non-null int64 5 mileage 5000 non-null float64 6 color 5000 non-null int64 7 cityId 5000 non-null int64 8 carCode 5000 non-null int64 9 transferCount 5000 non-null int64 10 seatings 5000 non-null int64 11 registerDate 5000 non-null object 12 licenseDate 5000 non-null object 13 country 4604 non-null float64 14 maketype 4625 non-null float64 15 modelyear 4894 non-null float64 16 displacement 5000 non-null float64 17 gearbox 5000 non-null int64 18 oiltype 5000 non-null int64 19 newprice 5000 non-null float64 20 anonymousFeature1 4660 non-null float64 21 anonymousFeature2 5000 non-null int64 22 anonymousFeature3 5000 non-null int64 23 anonymousFeature4 3137 non-null float64 24 anonymousFeature5 5000 non-null int64 25 anonymousFeature6 5000 non-null int64 26 anonymousFeature7 1685 non-null object 27 anonymousFeature8 4584 non-null float64 28 anonymousFeature9 4587 non-null float64 29 anonymousFeature10 3769 non-null float64 30 anonymousFeature11 4927 non-null object 31 anonymousFeature12 4999 non-null object 32 anonymousFeature13 4740 non-null float64 33 anonymousFeature14 5000 non-null int64 34 anonymousFeature15 281 non-null object dtypes: float64(12), int64(16), object(7)
测试集有5000行数据
3 查看缺失值msn.matrix(train)
msn.matrix(test)
carCode、modelyear、country、maketype、a1、a11缺失值较少,可以选择填充或者删除该行缺失值a4、a7、a8、a9、a10、a13、a15缺失值较多,可以直接不要这个字段的列
测试集缺失值和训练集相似,和训练集同样的处理方式
4 查看异常值只取缺失值较少或没有的字段分析
column = [ "brand", "serial", "model", "mileage", "color", "cityId", "carCode", "transferCount", "seatings",
"country", "maketype", "modelyear", "displacement", "gearbox", "oiltype", "newprice", "anonymousFeature1", "anonymousFeature2",
"anonymousFeature3", "anonymousFeature5", "anonymousFeature6", "anonymousFeature14","price"]
fig = plt.figure(figsize=(80,60),dpi=75)
for i in range(len(column)):
plt.subplot(8,4,i+1)
sns.boxplot(train[column[i]],orient= 'v',width=0.5)
plt.ylabel(column[i],fontsize = 40)
plt.show()
(1)查看所有特征字段的数据分布
# 所有字段的分布
dist_cols = 6
dist_rows = len(test.columns)
plt.figure(figsize=(4*dist_cols,4*dist_rows))
i = 1
for col in column:
if col =='price':
continue
ax = plt.subplot(dist_rows,dist_cols,i)
ax = sns.kdeplot(train[col],color='Red',shade= True)
ax = sns.kdeplot(test[col],color='Blue',shade=True)
ax.set_xlabel(col)
ax.set_ylabel('Frequency')
ax = ax.legend(['train','test'])
i+=1
plt.show()
训练集和测试集的每个字段数据分布近似
(2)查看price字段的数据分布
train['price'].describe()
count 30000.000000 mean 18.062224 std 629.444049 min 0.050000 25% 6.100000 50% 10.479900 75% 18.000000 max 109000.000000 Name: price, dtype: float64
存在异常值,平均在20左右
# 价格分布
y_p = train[train['price']
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?