您当前的位置: 首页 >  数学

Better Bench

暂无认证

  • 2浏览

    0关注

    695博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】2 问题一 数据预处理、特征工程及模型训练Baseline 和数据

Better Bench 发布时间:2021-12-23 20:34:27 ,浏览量:2

目录
  • 博文链接
  • 下载链接
  • 1 导入包
  • 2 特征工程
    • 2.1 缺失值处理
    • 2.2 提取时间特征
    • 2.3 匿名特征13的特征处理
    • 2.4 匿名特征12的处理
    • 2.5 匿名特征11的处理
    • 2.6 存储为csv
  • 3 特征筛选和降维
  • 4 模型训练

博文链接

初赛:

  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】1 数据分析及可视化

  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】2 问题一 Baseline 和数据

  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】3 问题二 思路和python实现 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】4 问题三 思路和数据及参考资料

  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】5 完整方案和40页论文PDF下载

复赛:

  • 【Mathorcup杯大数据挑战赛复赛 B题 二手车估价】思路及Python实现
下载链接
  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A】二手车估价问题的数据分析及可视化 代码下载

  • [【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】问题一 Baseline 和数据 下载

  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】问题二 思路和python实现代码 下载

  • [【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】问题三 思路和数据及参考资料 下载

  • 【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】5 完整方案和40页论文PDF下载

https://github.com/BetterBench/BetterBench-Shop

1 导入包
import datetime
import numpy as np
import pandas as pd
import numpy as np
from tqdm import tqdm
tqdm.pandas()

读取数据

file1.csv、file2.csv由“附件1:估价训练数据.txt”和“附件2:估价验证数据.txt”格式转换而来

train = pd.read_table('file1.csv',sep='\t',)
test = pd.read_table('file2.csv',sep='\t',)
2 特征工程

只使用缺失值较少或者没有的字段

column_tra = ["carid", "tradeTime", "brand", "serial", "model", "mileage", "color", "cityId", "carCode", "transferCount", "seatings", "registerDate",
              "licenseDate", "country", "maketype", "modelyear", "displacement", "gearbox", "oiltype", "newprice", "anonymousFeature1", "anonymousFeature2",
              "anonymousFeature3", "anonymousFeature5", "anonymousFeature6", "anonymousFeature11", "anonymousFeature12", "anonymousFeature14", "price"]
column_te = ["carid", "tradeTime", "brand", "serial", "model", "mileage", "color", "cityId", "carCode", "transferCount", "seatings", "registerDate",
             "licenseDate", "country", "maketype", "modelyear", "displacement", "gearbox", "oiltype", "newprice", "anonymousFeature1", "anonymousFeature2",
             "anonymousFeature3",  "anonymousFeature5", "anonymousFeature6", 
              "anonymousFeature11", "anonymousFeature12", "anonymousFeature14"]
train = train[column_tra]
test = test[column_te]
2.1 缺失值处理

对于分类特征,填充众数

数据不完整

以下每个特征的众数我用字母替代,众数可以自己统计,或者下载完整代码

# 以下分类特征全部填充众数
train['carCode'] = train['carCode'].fillna(a)
train['modelyear'] = train['modelyear'].fillna(b)
train['country'] = train['country'].fillna(c)
train['maketype'] = train['maketype'].fillna(d)
train['gearbox'] = train['gearbox'].fillna(e)
train['anonymousFeature5'] = train['anonymousFeature5'].fillna(f)

test['carCode'] = test['carCode'].fillna(a)
test['modelyear'] = test['modelyear'].fillna(b)
test['country'] = test['country'].fillna(c)
test['maketype'] = test['maketype'].fillna(d)
test['gearbox'] = test['gearbox'].fillna(e)
test['anonymousFeature5'] = test['anonymousFeature5'].fillna(f)


train['anonymousFeature1'] = train['anonymousFeature1'].fillna(a)
# train['anonymousFeature4'] = train['anonymousFeature4'].fillna(b)
# train['anonymousFeature8'] = train['anonymousFeature8'].fillna(c)
# train['anonymousFeature9'] = train['anonymousFeature9'].fillna(d)
# train['anonymousFeature10'] = train['anonymousFeature10'].fillna(e)
train['anonymousFeature11'] = train['anonymousFeature11'].fillna(f)

test['anonymousFeature1'] = test['anonymousFeature1'].fillna(a)
# test['anonymousFeature4'] = test['anonymousFeature4'].fillna(b)
# test['anonymousFeature8'] = test['anonymousFeature8'].fillna(c)
# test['anonymousFeature9'] = test['anonymousFeature9'].fillna(d)
# test['anonymousFeature10'] = test['anonymousFeature10'].fillna(e)
test['anonymousFeature11'] = test['anonymousFeature11'].fillna(f)

2.2 提取时间特征
# # 时间处理(提取年月日)
train['tradeTime'] = pd.to_datetime(train['tradeTime'])
train['registerDate'] = pd.to_datetime(train['registerDate'])
train['licenseDate'] = pd.to_datetime(train['licenseDate'])
test['tradeTime'] = pd.to_datetime(test['tradeTime'])
test['registerDate'] = pd.to_datetime(test['registerDate'])
test['licenseDate'] = pd.to_datetime(test['licenseDate'])


train['tradeTime_year'] = train['tradeTime'].dt.year
train['tradeTime_month'] = train['tradeTime'].dt.month
train['tradeTime_day'] = train['tradeTime'].dt.day
train['registerDate_year'] = train['registerDate'].dt.year
train['registerDate_month'] = train['registerDate'].dt.month
train['registerDate_day'] = train['registerDate'].dt.day
test['tradeTime_year'] = test['tradeTime'].dt.year
test['tradeTime_month'] = test['tradeTime'].dt.month
test['tradeTime_day'] = test['tradeTime'].dt.day
test['registerDate_year'] = test['registerDate'].dt.year
test['registerDate_month'] = test['registerDate'].dt.month
test['registerDate_day'] = test['registerDate'].dt.day
2.3 匿名特征13的特征处理

代码不完整,差time_format函数,完整代码请下载

# # 匿名特征13(转化时间格式)
train = train[train['anonymousFeature13'].notna()]
train = train.reset_index()
test = test[test['anonymousFeature13'].notna()]
test = test.reset_index()

train['anonymousFeature13'].progress_apply(time_format)
test['anonymousFeature13'].progress_apply(time_format)
train['anonymousFeature13'] = pd.to_datetime(train['anonymousFeature13'])
test['anonymousFeature13'] = pd.to_datetime(test['anonymousFeature13'])
train['anonymousFeature13_year'] = train['anonymousFeature13'].dt.year
train['anonymousFeature13_month'] = train['anonymousFeature13'].dt.month
test['anonymousFeature13_year'] = test['anonymousFeature13'].dt.year
test['anonymousFeature13_month'] = test['anonymousFeature13'].dt.month
2.4 匿名特征12的处理
series1 = train['anonymousFeature12'].str.split('*', expand=True)
train['length'] = series1[0]
train['width'] = series1[1]
train['high'] = series1[2]
series2 = test['anonymousFeature12'].str.split('*', expand=True)
test['length'] = series2[0]
test['width'] = series2[1]
test['high'] = series2[2]

train['length'] = train['length'].astype(float)
train['width'] = train['width'].astype(float)
train['high'] = train['high'].astype(float)

test['length'] = test['length'].astype(float)
test['width'] = test['width'].astype(float)
test['high'] = test['high'].astype(float)
2.5 匿名特征11的处理

代码不完整,差dict字典,完整代码下载:

train['anonymousFeature11'] = train['anonymousFeature11'].map(dict)
test['anonymousFeature11'] = test['anonymousFeature11'].map(dict)
2.6 存储为csv

在这里插入图片描述

总共挖掘了33个特征,除了以上已有的特征提取外,还可以构造交叉特征,挖掘其他的特征。此处省略

train.to_csv('clear_train.csv',index=0)
test.to_csv('clear_test.csv',index=0)
3 特征筛选和降维

略。。。

4 模型训练

导入包

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
import lightgbm as lgb
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
import pandas as pd
import warnings
from sklearn.preprocessing import scale
from sklearn.model_selection import cross_val_score
import lightgbm as lgb
from sklearn.model_selection import KFold
import xgboost as xgb
from catboost import CatBoostRegressor
import time
import numpy as np
from sklearn.preprocessing import StandardScaler

读取数据

train = pd.read_csv('clear_train.csv')
test = pd.read_csv('clear_test.csv')

筛选数据并归一化,大于75的为异常值,直接舍弃

n_price = 75
train_X = train[train['price']             
关注
打赏
1665674626
查看更多评论
0.0477s