您当前的位置: 首页 >  面试

Better Bench

暂无认证

  • 0浏览

    0关注

    695博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?

Better Bench 发布时间:2022-09-27 09:07:08 ,浏览量:0

决策树如何进行剪枝?

分为预剪枝和后剪枝。

预剪枝的思想是在树中结点进行扩展之前,先计算当前的划分是否带来模型泛化能力的提升,如果不能,则不再继续生长子树。预剪枝对何时停止决策树的生长有几种方法

  • 当树达到一定深度时,停止树的生长
  • 当达到当前结点的样本数量小于某个阈值的时候,停止树的生长
  • 计算每次分裂时对测试机的准确率提升,当小于某个阈值的时候,不再继续扩展

后剪枝的思想是让算法生成一颗完全生长的决策树,然背后从最底层向上计算是否剪枝。剪枝过程将子树删除,用一个叶子结点替代。相比于预剪枝,后剪枝方法通常可以得到泛化能力更强的决策树,但时间开销更大。常见的后剪枝方法有

  • 代价复杂度剪枝(CCP)
  • 错误率降低剪枝(REP)
  • 悲观剪枝(PEP)
  • 最小误差剪枝(MEP)
  • CVP(Critical Value Pruning)
  • OPP(Optimal Pruning)
关注
打赏
1665674626
查看更多评论
立即登录/注册

微信扫码登录

0.0387s