欢迎关注我的公众号是【CodeAllen】,关注回复【1024】获取精品学习资源 程序员技术交流①群:736386324 程序员技术交流②群:371394777
B树(B-tree)是一种平衡的多路查找树,2-3树和2-3-4树就是B树的特例结点最大的孩子数目称为B树的阶(order),因此,2-3树是3阶B树,2-3-4树是4阶B树
一个m阶的B树具有如下属性:
1.如果根结点不是叶结点,则其至少有两棵子树
2.每一个非根的分支结点都有k-1个元素(关键字)和k个孩子,其中k满足:⌈m/2⌉ = (0) ) ? (1) : (0) ) //比较a,b大小 #define DEBUG_BTREE // 模拟向磁盘写入节点 void disk_write(BTNode* node) { //打印出结点中的全部元素,方便调试查看keynum之后的元素是否为0(即是否存在垃圾数据);而不是keynum个元素。 printf("向磁盘写入节点"); for(int i=0;ikey[i]); } printf("\n"); } // 模拟从磁盘读取节点 void disk_read(BTNode** node) { //打印出结点中的全部元素,方便调试查看keynum之后的元素是否为0(即是否存在垃圾数据);而不是keynum个元素。 printf("向磁盘读取节点"); for(int i=0;ikey[i]); } printf("\n"); } // 按层次打印 B 树 void BTree_print(const BTree tree, int layer) { int i; BTNode* node = tree; if (node) { printf("第 %d 层, %d node : ", layer, node->keynum); //打印出结点中的全部元素,方便调试查看keynum之后的元素是否为0(即是否存在垃圾数据);而不是keynum个元素。 for (i = 0; i < ORDER-1; ++i) { //for (i = 0; i < node->keynum; ++i) { printf("%c ", node->key[i]); } printf("\n"); ++layer; for (i = 0 ; i keynum; i++) { if (node->child[i]) { BTree_print(node->child[i], layer); } } } else { printf("树为空。\n"); } } // 结点node内对关键字进行二分查找。 int binarySearch(BTNode* node, int low, int high, KeyType Fkey) { int mid; while (lownode->key[mid]) { low = mid+1; } if (Fkey==node->key[mid]) { return mid;//返回下标。 } } return 0;//未找到返回0. } //insert /*************************************************************************************** 将分裂的结点中的一半元素给新建的结点,并且将分裂结点中的中间关键字元素上移至父节点中。 parent 是一个非满的父节点 node 是 tree 孩子表中下标为 index 的孩子节点,且是满的,需分裂。 *******************************************************************/ void BTree_split_child(BTNode* parent, int index, BTNode* node) { #ifdef DEBUG_BTREE printf("BTree_split_child!\n"); #endif assert(parent && node); int i; // 创建新节点,存储 node 中后半部分的数据 BTNode* newNode = (BTNode*)calloc(sizeof(BTNode), 1); if (!newNode) { printf("Error! out of memory!\n"); return; } newNode->isLeaf = node->isLeaf; newNode->keynum = BTree_D - 1; // 拷贝 node 后半部分关键字,然后将node后半部分置为0。 for (i = 0; i < newNode->keynum; ++i){ newNode->key[i] = node->key[BTree_D + i]; node->key[BTree_D + i] = 0; } // 如果 node 不是叶子节点,拷贝 node 后半部分的指向孩子节点的指针,然后将node后半部分指向孩子节点的指针置为NULL。 if (!node->isLeaf) { for (i = 0; i < BTree_D; i++) { newNode->child[i] = node->child[BTree_D + i]; node->child[BTree_D + i] = NULL; } } // 将 node 分裂出 newNode 之后,里面的数据减半 node->keynum = BTree_D - 1; // 调整父节点中的指向孩子的指针和关键字元素。分裂时父节点增加指向孩子的指针和关键元素。 for (i = parent->keynum; i > index; --i) { parent->child[i + 1] = parent->child[i]; } parent->child[index + 1] = newNode; for (i = parent->keynum - 1; i >= index; --i) { parent->key[i + 1] = parent->key[i]; } parent->key[index] = node->key[BTree_D - 1]; ++parent->keynum; node->key[BTree_D - 1] = 0; // 写入磁盘 disk_write(parent); disk_write(newNode); disk_write(node); } void BTree_insert_nonfull(BTNode* node, KeyType key) { assert(node); int i; // 节点是叶子节点,直接插入 if (node->isLeaf) { i = node->keynum - 1; while (i >= 0 && key < node->key[i]) { node->key[i + 1] = node->key[i]; --i; } node->key[i + 1] = key; ++node->keynum; // 写入磁盘 disk_write(node); } // 节点是内部节点 else { /* 查找插入的位置*/ i = node->keynum - 1; while (i >= 0 && key < node->key[i]) { --i; } ++i; // 从磁盘读取孩子节点 disk_read(&node->child[i]); // 如果该孩子节点已满,分裂调整值 if (node->child[i]->keynum == (ORDER-1)) { BTree_split_child(node, i, node->child[i]); // 如果待插入的关键字大于该分裂结点中上移到父节点的关键字,在该关键字的右孩子结点中进行插入操作。 if (key > node->key[i]) { ++i; } } BTree_insert_nonfull(node->child[i], key); } } void BTree_insert(BTree* tree, KeyType key) { #ifdef DEBUG_BTREE printf("BTree_insert:\n"); #endif BTNode* node; BTNode* root = *tree; // 树为空 if (NULL == root) { root = (BTNode*)calloc(sizeof(BTNode), 1); if (!root) { printf("Error! out of memory!\n"); return; } root->isLeaf = true; root->keynum = 1; root->key[0] = key; *tree = root; // 写入磁盘 disk_write(root); return; } // 根节点已满,插入前需要进行分裂调整 if (root->keynum == (ORDER-1)) { // 产生新节点当作根 node = (BTNode*)calloc(sizeof(BTNode), 1); if (!node) { printf("Error! out of memory!\n"); return; } *tree = node; node->isLeaf = false; node->keynum = 0; node->child[0] = root; BTree_split_child(node, 0, root); BTree_insert_nonfull(node, key); } // 根节点未满,在当前节点中插入 key else { BTree_insert_nonfull(root, key); } } //remove // 对 tree 中的节点 node 进行合并孩子节点处理. // 注意:孩子节点的 keynum 必须均已达到下限,即均等于 BTree_D - 1 // 将 tree 中索引为 index 的 key 下移至左孩子结点中, // 将 node 中索引为 index + 1 的孩子节点合并到索引为 index 的孩子节点中,右孩子合并到左孩子结点中。 // 并调相关的 key 和指针。
void BTree_merge_child(BTree* tree, BTNode* node, int index) { #ifdef DEBUG_BTREE printf("BTree_merge_child!\n"); #endif assert(tree && node && index >= 0 && index < node->keynum); int i; KeyType key = node->key[index]; BTNode* leftChild = node->child[index]; BTNode* rightChild = node->child[index + 1]; assert(leftChild && leftChild->keynum == BTree_D - 1 && rightChild && rightChild->keynum == BTree_D - 1); // 将 node中关键字下标为index 的 key 下移至左孩子结点中,该key所对应的右孩子结点指向node的右孩子结点中的第一个孩子。 leftChild->key[leftChild->keynum] = key; leftChild->child[leftChild->keynum + 1] = rightChild->child[0]; ++leftChild->keynum; // 右孩子的元素合并到左孩子结点中。 for (i = 0; i < rightChild->keynum; ++i) { leftChild->key[leftChild->keynum] = rightChild->key[i]; leftChild->child[leftChild->keynum + 1] = rightChild->child[i + 1]; ++leftChild->keynum; } // 在 node 中下移的 key后面的元素前移 for (i = index; i < node->keynum - 1; ++i) { node->key[i] = node->key[i + 1]; node->child[i + 1] = node->child[i + 2]; } node->key[node->keynum - 1] = 0; node->child[node->keynum] = NULL; --node->keynum; // 如果根节点没有 key 了,并将根节点调整为合并后的左孩子节点;然后删除释放空间。 if (node->keynum == 0) { if (*tree == node) { *tree = leftChild; } free(node); node = NULL; } free(rightChild); rightChild = NULL; } void BTree_recursive_remove(BTree* tree, KeyType key) { // B-数的保持条件之一: // 非根节点的内部节点的关键字数目不能少于 BTree_D - 1 int i, j, index; BTNode *root = *tree; BTNode *node = root; if (!root) { printf("Failed to remove %c, it is not in the tree!\n", key); return; } // 结点中找key。 index = 0; while (index < node->keynum && key > node->key[index]) { ++index; } /*======================含有key的当前结点时的情况==================== node: index of Key: i-1 i i+1 +---+---+---+---+ * key * +---+---+---+---+---+ / \ index of Child: i i+1 / \ +---+---+ +---+---+ * * * * +---+---+---+ +---+---+---+ leftChild rightChild ============================================================*/ /*一、结点中找到了关键字key的情况.*/ BTNode *leftChild, *rightChild; KeyType leftKey, rightKey; if (index < node->keynum && node->key[index] == key) { /* 1,所在节点是叶子节点,直接删除*/ if (node->isLeaf) { for (i = index; i < node->keynum-1; ++i) { node->key[i] = node->key[i + 1]; //node->child[i + 1] = node->child[i + 2];叶子节点的孩子结点为空,无需移动处理。 } node->key[node->keynum-1] = 0; //node->child[node->keynum] = NULL; --node->keynum; if (node->keynum == 0) { assert(node == *tree); free(node); *tree = NULL; } return; } /*2.选择脱贫致富的孩子结点。*/ // 2a,选择相对富有的左孩子结点。 // 如果位于 key 前的左孩子结点的 key 数目 >= BTree_D, // 在其中找 key 的左孩子结点的最后一个元素上移至父节点key的位置。 // 然后在左孩子节点中递归删除元素leftKey。 else if (node->child[index]->keynum >= BTree_D) { leftChild = node->child[index]; leftKey = leftChild->key[leftChild->keynum - 1]; node->key[index] = leftKey; BTree_recursive_remove(&leftChild, leftKey); } // 2b,选择相对富有的右孩子结点。 // 如果位于 key 后的右孩子结点的 key 数目 >= BTree_D, // 在其中找 key 的右孩子结点的第一个元素上移至父节点key的位置 // 然后在右孩子节点中递归删除元素rightKey。 else if (node->child[index + 1]->keynum >= BTree_D) { rightChild = node->child[index + 1]; rightKey = rightChild->key[0]; node->key[index] = rightKey; BTree_recursive_remove(&rightChild, rightKey); } /*左右孩子结点都刚脱贫。删除前需要孩子结点的合并操作*/ // 2c,左右孩子结点只包含 BTree_D - 1 个节点, // 合并是将 key 下移至左孩子节点,并将右孩子节点合并到左孩子节点中, // 删除右孩子节点,在父节点node中移除 key 和指向右孩子节点的指针, // 然后在合并了的左孩子节点中递归删除元素key。 else if (node->child[index]->keynum == BTree_D - 1 && node->child[index + 1]->keynum == BTree_D - 1){ leftChild = node->child[index]; BTree_merge_child(tree, node, index); // 在合并了的左孩子节点中递归删除 key BTree_recursive_remove(&leftChild, key); } } /*======================未含有key的当前结点时的情况==================== node: index of Key: i-1 i i+1 +---+---+---+---+ * keyi * +---+---+---+---+---+ / | \ index of Child: i-1 i i+1 / | \ +---+---+ +---+---+ +---+---+ * * * * * * +---+---+---+ +---+---+---+ +---+---+---+ leftSibling Child rightSibling ============================================================*/ /*二、结点中未找到了关键字key的情况.*/ else { BTNode *leftSibling, *rightSibling, *child; // 3. key 不在内节点 node 中,则应当在某个包含 key 的子节点中。 // key < node->key[index], 所以 key 应当在孩子节点 node->child[index] 中 child = node->child[index]; if (!child) { printf("Failed to remove %c, it is not in the tree!\n", key); return; } /*所需查找的该孩子结点刚脱贫的情况*/ if (child->keynum == BTree_D - 1) { leftSibling = NULL; rightSibling = NULL; if (index - 1 >= 0) { leftSibling = node->child[index - 1]; } if (index + 1 keynum) { rightSibling = node->child[index + 1]; } /*选择致富的相邻兄弟结点。*/ // 3a,如果所在孩子节点相邻的兄弟节点中有节点至少包含 BTree_D 个关键字 // 将 node 的一个关键字key[index]下移到 child 中,将相对富有的相邻兄弟节点中一个关键字上移到 // node 中,然后在 child 孩子节点中递归删除 key。 if ((leftSibling && leftSibling->keynum >= BTree_D) || (rightSibling && rightSibling->keynum >= BTree_D)) { int richR = 0; if(rightSibling) richR = 1; if(leftSibling && rightSibling) { richR = cmp(rightSibling->keynum,leftSibling->keynum); } if (rightSibling && rightSibling->keynum >= BTree_D && richR) { //相邻右兄弟相对富有,则该孩子先向父节点借一个元素,右兄弟中的第一个元素上移至父节点所借位置,并进行相应调整。 child->key[child->keynum] = node->key[index]; child->child[child->keynum + 1] = rightSibling->child[0]; ++child->keynum; node->key[index] = rightSibling->key[0]; for (j = 0; j < rightSibling->keynum - 1; ++j) {//元素前移 rightSibling->key[j] = rightSibling->key[j + 1]; rightSibling->child[j] = rightSibling->child[j + 1]; } rightSibling->key[rightSibling->keynum-1] = 0; rightSibling->child[rightSibling->keynum-1] = rightSibling->child[rightSibling->keynum]; rightSibling->child[rightSibling->keynum] = NULL; --rightSibling->keynum; } else {//相邻左兄弟相对富有,则该孩子向父节点借一个元素,左兄弟中的最后元素上移至父节点所借位置,并进行相应调整。 for (j = child->keynum; j > 0; --j) {//元素后移 child->key[j] = child->key[j - 1]; child->child[j + 1] = child->child[j]; } child->child[1] = child->child[0]; child->child[0] = leftSibling->child[leftSibling->keynum]; child->key[0] = node->key[index - 1]; ++child->keynum; node->key[index - 1] = leftSibling->key[leftSibling->keynum - 1]; leftSibling->key[leftSibling->keynum - 1] = 0; leftSibling->child[leftSibling->keynum] = NULL; --leftSibling->keynum; } } /*相邻兄弟结点都刚脱贫。删除前需要兄弟结点的合并操作,*/ // 3b, 如果所在孩子节点相邻的兄弟节点都只包含 BTree_D - 1 个关键字, // 将 child 与其一相邻节点合并,并将 node 中的一个关键字下降到合并节点中, // 再在 node 中删除那个关键字和相关指针,若 node 的 key 为空,删之,并调整根为合并结点。 // 最后,在相关孩子节点child中递归删除 key。 else if ((!leftSibling || (leftSibling && leftSibling->keynum == BTree_D - 1)) && (!rightSibling || (rightSibling && rightSibling->keynum == BTree_D - 1))) { if (leftSibling && leftSibling->keynum == BTree_D - 1) { BTree_merge_child(tree, node, index - 1);//node中的右孩子元素合并到左孩子中。 child = leftSibling; } else if (rightSibling && rightSibling->keynum == BTree_D - 1) { BTree_merge_child(tree, node, index);//node中的右孩子元素合并到左孩子中。 } } } BTree_recursive_remove(&child, key);//调整后,在key所在孩子结点中继续递归删除key。 } } void BTree_remove(BTree* tree, KeyType key) { #ifdef DEBUG_BTREE printf("BTree_remove:\n"); #endif if (*tree==NULL) { printf("BTree is NULL!\n"); return; } BTree_recursive_remove(tree, key); } //=====================================search==================================== BTNode* BTree_recursive_search(const BTree tree, KeyType key, int* pos) { int i = 0; while (i < tree->keynum && key > tree->key[i]) { ++i; } // Find the key. if (i < tree->keynum && tree->key[i] == key) { *pos = i; return tree; } // tree 为叶子节点,找不到 key,查找失败返回 if (tree->isLeaf) { return NULL; } // 节点内查找失败,但 tree->key[i - 1]< key < tree->key[i], // 下一个查找的结点应为 child[i] // 从磁盘读取第 i 个孩子的数据 disk_read(&tree->child[i]); // 递归地继续查找于树 tree->child[i] return BTree_recursive_search(tree->child[i], key, pos); } BTNode* BTree_search(const BTree tree, KeyType key, int* pos) { #ifdef DEBUG_BTREE printf("BTree_search:\n"); #endif if (!tree) { printf("BTree is NULL!\n"); return NULL; } *pos = -1; return BTree_recursive_search(tree,key,pos); } //===============================create=============================== void BTree_create(BTree* tree, const KeyType* data, int length) { assert(tree); int i; #ifdef DEBUG_BTREE printf("\n 开始创建 B-树,关键字为:\n"); for (i = 0; i < length; i++) { printf(" %c ", data[i]); } printf("\n"); #endif for (i = 0; i < length; i++) { #ifdef DEBUG_BTREE printf("\n插入关键字 %c:\n", data[i]); #endif int pos = -1; BTree_search(*tree,data[i],&pos);//树的递归搜索。 if (pos!=-1) { printf("this key %c is in the B-tree,not to insert.\n",data[i]); }else{ BTree_insert(tree, data[i]);//插入元素到BTree中。 } #ifdef DEBUG_BTREE BTree_print(*tree);//树的深度遍历。 #endif } printf("\n"); } //===============================destroy=============================== void BTree_destroy(BTree* tree) { int i; BTNode* node = *tree; if (node) { for (i = 0; i keynum; i++) { BTree_destroy(&node->child[i]); } free(node); } *tree = NULL; }头文件
//实现对order序(阶)的B-TREE结构基本操作的封装。
//查找:search,插入:insert,删除:remove。
//创建:create,销毁:destory,打印:print。
#ifndef BTREE_H
#define BTREE_H
#ifdef __cplusplus
extern "C" {
#endif
* 定义m序(阶)B 树的最小度数BTree_D=ceil(m)*/
/// 在这里定义每个节点中关键字的最大数目为:2 * BTree_D - 1,即序(阶):2 * BTree_D.
#define BTree_D 2
#define ORDER (BTree_D * 2) //定义为4阶B-tree,2-3-4树。最简单为3阶B-tree,2-3树。
//#define ORDER (BTree_T * 2-1) //最简单为3阶B-tree,2-3树。
typedef int KeyType;
typedef struct BTNode{
int keynum; /// 结点中关键字的个数,keynum
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?