目录
前言
集合类型
List源码
Queue、Stack源码
HashSet、Dictionary源码
总结
附录
前言计划开一个新的系列,来讲一讲在工作中经常用到的性能优化手段、思路和如何发现性能瓶颈,后续有时间的话应该会整理一系列的博文出来。 今天要谈的一个性能优化的Tips是一个老生常谈的点,但是也是很多人没有注意的一个点。在使用集合类型是,你应该设置一个预估的初始大小,那么为什么需要这样做?我们一起来从源码的角度说一说。
集合类型我们先来聊一聊.NET BCL库中提供的集合类型,对于这个大家肯定都不陌生,比如List
、HashSet
、Dictionary
、Queue
、Stack
等等,这些都是大家每天都用到,非常熟悉的类型了,那么大家在使用的时候有没有注意过它们有一个特殊构造函数呢?像下面代码块中的那样。
public Stack (int capacity)
public List (int capacity)
public Queue (int capacity)
public HashSet (int capacity)
public Dictionary (int capacity)
哎?为什么这些构造函数都有一个叫capacity
的参数呢?我们来看看这个参数的注释。初始化类的新实例,该实例为空并且具有指定的初始容量或默认初始容量。 这就很奇怪了不是吗?在我们印象里面只有数组之类的才需要指定固定的长度,为什么这些可以无限添加元素的集合类型也要设置初始容量呢?这其实和这些集合类型的实现方式有关,废话不多说,我们直接看源码。
首先来看比较简单的List的源码(源码地址在文中都做了超链接,可以直接点击过去,在文末也会附上链接地址)。下面是List的私有变量。
// 用于存在实际的数据,添加进List的元素都由存储在_items数组中
internal T[] _items;
// 当前已经存储了多少元素
internal int _size;
// 当前的版本号,List每发生一次元素的变更,版本号都会+1
private int _version;
从上面的源码中,我们可以看到虽然List是动态集合,可以无限的往里面添加元素,但是它底层存储数据的还是使用的数组,那么既然使用的数组那它是怎么实现能无限的往里面添加元素的?我们来看看Add
方法。
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(T item)
{
// 版本号+1
_version++;
T[] array = _items;
int size = _size;
// 如果当前已经使用的空间 小于数组大小那么直接存储 size+1
if ((uint)size < (uint)array.Length)
{
_size = size + 1;
array[size] = item;
}
else
{
// 注意!!如果已经使用的空间等于数组大小,那么走AddWithResize方法
AddWithResize(item);
}
}
从上面的源码可以看到,如果内部_item
数组有足够的空间,那么元素直接往里面加就好了,但是如果内部已存放的元素_size
等于_item
数组大小时,会调用AddWithResize
方法,我们来看看里面做了啥。
通过上面的代码我们可以得到两个有意思的结论。
-
一个List元素最大能存放2^31个元素.
-
不设置Capacity的话,默认初始大小为4,后面会以2倍的空间扩容。
List
底层是通过数组来存放元素的,如果空间不够会按照2倍大小来扩容,但是它并不能无限制的存放数据。 在元素低于4个的情况下,不设置Capacity不会有任何影响;如果大于4个,那么就会走扩容流程,不仅需要申请新的数组,而且还要发生内存复制和需要GC回收原来的数组。 大家必须知道分配内存、内存复制和GC回收内存的代价是巨大的,下面有个示意图,举了一个从4扩容到8的例子。
上面列举了我们从源码中看到的情况,那么不设置初始化的容量,对性能影响到底有多大呢?所以构建了一个Benchmark,来看看在不同量级下的影响,下面的Benchmark主要是探究两个问题。
-
设置初始值容量和不设置有多大的差别
-
要多少设置多少比较好,还是可以随意设置一些值
public class ListCapacityBench
{
// 宇宙的真理 42
private static readonly Random OriginRandom = new(42);
// 整一个数列模拟常见的集合大小 最大12万
private static readonly int[] Arrays =
{
3, 5, 8, 13, 21, 34, 55, 89, 100, 120, 144, 180, 200, 233,
250, 377, 500, 550, 610, 987, 1000, 1500, 1597, 2000, 2584,
4181, 5000, 6765, 10946, 17711, 28657, 46368, 75025, 121393
};
// 生成一些随机数
private static readonly int[] OriginArrays = Enumerable.Range(0, Arrays.Max()).Select(c => OriginRandom.Next()).ToArray();
// 不设置容量
[Benchmark(Baseline = true)]
public int WithoutCapacity()
{
return InnerTest(null);
}
// 刚好设置需要的容量
[Benchmark]
public int SetArrayLengthCapacity()
{
return InnerTest(null, true);
}
// 设置为8
[Benchmark]
public int Set8Capacity()
{
return InnerTest(8);
}
// 设置为16
[Benchmark]
public int Set16Capacity()
{
return InnerTest(16);
}
// 设置为32
[Benchmark]
public int Set32Capacity()
{
return InnerTest(32);
}
// 设置为64
[Benchmark]
public int Set64Capacity()
{
return InnerTest(64);
}
// 实际的测试方法
// 不使用JIT优化,模拟集合的实际使用场景
[MethodImpl(MethodImplOptions.NoOptimization)]
private static int InnerTest(int? capacity, bool setLength = false)
{
var list = new List();
foreach (var length in Arrays)
{
List innerList;
if (capacity == null)
{
innerList = setLength ? new List(length) : new List();
}
else
{
innerList = new List(capacity.Value);
}
// 真正的测试方法 简单的填充数据
foreach (var item in OriginArrays.AsSpan()[..length])
{
innerList.Add(item);
}
list.Add(innerList.Count);
}
return list.Count;
}
从上面的Benchmark结果可以看出来,设置刚好需要的初始容量最快(比不设置快40%)、GC次数最少(50%+)、分配的内存也最少(节约60%),另外不建议不设置初始大小,它是最慢的。 要是实在不能预估大小,那么可以无脑设置一个8表现稍微好一点点。如果能预估大小,因为它是2倍扩容,可以在2的N次方中找一个接近的。
8 16 32 64 128 512 1024 2048 4096 8192 ......
Queue、Stack源码接下来看看Queue和Stack,看看它的扩容逻辑是怎么样的。
private void Grow(int capacity)
{
Debug.Assert(_array.Length < capacity);
const int GrowFactor = 2;
const int MinimumGrow = 4;
int newcapacity = GrowFactor * _array.Length;
if ((uint)newcapacity > Array.MaxLength) newcapacity = Array.MaxLength;
newcapacity = Math.Max(newcapacity, _array.Length + MinimumGrow);
if (newcapacity < capacity) newcapacity = capacity;
SetCapacity(newcapacity);
}
基本一样,也是2倍扩容,所以按照我们上面的规则就好了。
HashSet、Dictionary源码HashSet和Dictionary的逻辑实现类似,只是一个Key就是Value,另外一个是Key对应Value。不过它们的扩容方式有所不同,具体可以看我之前的博客,来看看扩容的源码,这里以HashSet
为例。
private void Resize() => Resize(HashHelpers.ExpandPrime(_count), forceNewHashCodes: false);
private void Resize(int newSize, bool forceNewHashCodes)
{
// Value types never rehash
Debug.Assert(!forceNewHashCodes || !typeof(T).IsValueType);
Debug.Assert(_entries != null, "_entries should be non-null");
Debug.Assert(newSize >= _entries.Length);
var entries = new Entry[newSize];
int count = _count;
Array.Copy(_entries, entries, count);
if (!typeof(T).IsValueType && forceNewHashCodes)
{
Debug.Assert(_comparer is NonRandomizedStringEqualityComparer);
_comparer = (IEqualityComparer)((NonRandomizedStringEqualityComparer)_comparer).GetRandomizedEqualityComparer();
for (int i = 0; i < count; i++)
{
ref Entry entry = ref entries[i];
if (entry.Next >= -1)
{
entry.HashCode = entry.Value != null ? _comparer!.GetHashCode(entry.Value) : 0;
}
}
if (ReferenceEquals(_comparer, EqualityComparer.Default))
{
_comparer = null;
}
}
// Assign member variables after both arrays allocated to guard against corruption from OOM if second fails
_buckets = new int[newSize];
#if TARGET_64BIT
_fastModMultiplier = HashHelpers.GetFastModMultiplier((uint)newSize);
#endif
for (int i = 0; i < count; i++)
{
ref Entry entry = ref entries[i];
if (entry.Next >= -1)
{
ref int bucket = ref GetBucketRef(entry.HashCode);
entry.Next = bucket - 1; // Value in _buckets is 1-based
bucket = i + 1;
}
}
_entries = entries;
}
从上面的源码中可以看到Resize的步骤如下所示。
-
通过
HashHelpers.ExpandPrime
获取新的Size -
创建新的数组,使用数组拷贝将原数组元素拷贝过去
-
对所有元素进行重新Hash,重建引用
从这里大家就可以看出来,如果不指定初始大小的话,HashSet
和Dictionary
这样的数据结构扩容的成本更高,因为还需要ReHash这样的操作。 那么HashHelpers.ExpandPrime
是一个什么样的方法呢?究竟每次会扩容多少空间呢?我们来看HashHelpers源码。
public const uint HashCollisionThreshold = 100;
// 这是比Array.MaxLength小最大的素数
public const int MaxPrimeArrayLength = 0x7FFFFFC3;
public const int HashPrime = 101;
public static int ExpandPrime(int oldSize)
{
// 新的size等于旧size的两倍
int nwSize = 2 * oldSize;
// 和List一样,如果大于了指定最大值,那么直接返回最大值
if ((uint)newSize > MaxPrimeArrayLength && MaxPrimeArrayLength > oldSize)
{
Debug.Assert(MaxPrimeArrayLength == GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength");
return MaxPrimeArrayLength;
}
// 获取大于newSize的第一素数
return GetPrime(newSize);
}
public static int GetPrime(int min)
{
if (min < 0)
throw new ArgumentException(SR.Arg_HTCapacityOverflow);
// 获取大于min的第一个素数
foreach (int prime in s_primes)
{
if (prime >= min)
return prime;
}
// 如果素数列表里面没有 那么计算
for (int i = (min | 1); i < int.MaxValue; i += 2)
{
if (IsPrime(i) && ((i - 1) % HashPrime != 0))
return i;
}
return min;
}
// 用于扩容的素数列表
private static readonly int[] s_primes =
{
3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293, 353, 431, 521, 631, 761, 919,
1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419, 10103, 12143, 14591,
17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523, 108631, 130363, 156437,
187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403, 968897, 1162687, 1395263,
1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471, 7199369
};
// 当容量大于7199369时,需要计算素数
public static bool IsPrime(int candidate)
{
if ((candidate & 1) != 0)
{
int limit = (int)Math.Sqrt(candidate);
for (int divisor = 3; divisor
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?