本文介绍C#实现图的深度优先遍历–非递归代码 1、程序如下所示 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;
namespace 图的应用__深度优先搜索算法 { using VertexType = System.Char;//顶点数据类型别名声明 using EdgeType = System.Int16;//带权图中边上权值的数据类型别名声明 class Program { public const int MAxVertexNum = 100;//顶点数目的最大值 public const int MAXSize = 100; static void Main(string[] args) { MGraph G = new MGraph(); int u; int[] d = new int[MAxVertexNum]; G.vexnum = 8; G.arcnum = 8; G.vex = new VertexType[MAxVertexNum]; G.Edge = new EdgeType[MAxVertexNum, MAxVertexNum]; for (int i = 0; i < MAxVertexNum; ++i) { for (int j = 0; j < MAxVertexNum; ++j) { G.Edge[i, j] = 0; } } //图的赋值 G.vex[0] = ‘a’; G.vex[1] = ‘b’; G.vex[2] = ‘c’; G.vex[3] = ‘d’; G.vex[4] = ‘e’; G.vex[5] = ‘f’; G.vex[6] = ‘g’; G.vex[7] = ‘h’; G.Edge[0, 1] = 1; G.Edge[0, 2] = 1; G.Edge[1, 0] = 1; G.Edge[1, 3] = 1; G.Edge[1, 4] = 1; G.Edge[2, 0] = 1; G.Edge[2, 5] = 1; G.Edge[2, 6] = 1; G.Edge[3, 1] = 1; G.Edge[4, 1] = 1; G.Edge[4, 7] = 1; G.Edge[5, 2] = 1; G.Edge[6, 2] = 1; G.Edge[7, 4] = 1; Console.WriteLine(“递归深度优先:”); DFS_Traverse(G); Console.ReadLine(); }
///
/// 图的定义--邻接矩阵
///
public struct MGraph
{
public VertexType[] vex;//顶点表数组
public EdgeType[,] Edge;//临接矩阵、边表
public int vexnum, arcnum;//图的当前顶点数和弧数
}
///
/// 图的定义--邻接表法
///
public class ArcNode
{//边表节点
public int adjvex;
public ArcNode next;
}
public class VNode
{ //顶点表节点
VertexType data;//顶点信息
ArcNode first;//只想第一条依附改顶点的弧的指针
}
public class ALGraph
{
VNode[] vertices; //邻接表
int vexnum, arcnum;//图的顶点数和弧数
}
///
/// 深度优先搜索的递归实现
///
///
///
///
static void DFS_Traverse(MGraph G) {
bool[] visited = new bool[MAxVertexNum];
for (int i=0;i=0;w=NextNeighbor(G,v,w)) {
if (!visited[w]) {
Push(ref S, w);
}
}
}
}
//控制台打印遍历点
static void visit(MGraph G, int v)
{
Console.Write(G.vex[v] + " ");
}
//查找G中,V顶点的首个邻接点
static int FirstNeighbor(MGraph G, int v)
{
int b = -1;
for (int i = 0; i < G.vexnum; ++i)
{
if (G.Edge[v, i] == 1)
{
b = i;
break;
};
}
return b;//返回首个邻接点
}
//查找G中,V顶点的W邻节点后的下一个邻接点
static int NextNeighbor(MGraph G, int v, int w)
{
int b = -1;
for (int i = w + 1; i < G.vexnum; ++i)
{
if (G.Edge[v, i] == 1)
{
b = i;
break;
};
}
return b;//返回下一个邻接点
}
///
/// 栈定义
///
public struct SqStack
{
public int[] data;
public int top;//栈顶
}
///
/// 判断栈是否为空
///
///
///
static bool StackEmpty(SqStack S)
{
if (S.top == -1)
{
return true;
}
else
{
return false;
}
}
///
/// 栈初始化
///
///
static void InitStack(ref SqStack S)
{
S.top = -1;
}
///
/// 压栈
///
///
///
static bool Push(ref SqStack S, int e)
{
if (S.top >= MAxVertexNum - 1)
{
return false;
}
S.top = S.top + 1;
S.data[S.top] = e;//先加1,再进栈
return true;
}
///
/// 出栈
///
///
///
///
static bool PoP(ref SqStack S, ref int e)
{
if (S.top == -1) { return false; }
e = S.data[S.top--];//出栈
return true;
}
///
///
///读取栈顶元素
///
///
///
///
bool GetTop(ref SqStack S, ref int e)
{
if (S.top == -1) { return false; }
e = S.data[S.top];//读取元素
return true;
}
}
}
2、测试如下: