一:Java 类加载过程?
Java 类加载需要经历一下 7 个过程:
1. 加载
加载是类加载的第一个过程,在这个阶段,将完成一下三件事情:
• 通过一个类的全限定名获取该类的二进制流。
• 将该二进制流中的静态存储结构转化为方法去运行时数据结构。
• 在内存中生成该类的 Class 对象,作为该类的数据访问入口。
2. 验证
验证的目的是为了确保 Class 文件的字节流中的信息不回危害到虚拟机, 在该阶段主要完成以下四钟验证:
• 文件格式验证:验证字节流是否符合 Class 文件的规范,如 主次版本号是否在当前虚拟机范围内,常量池中的常量是否 有不被支持的类型.
• 元数据验证:对字节码描述的信息进行语义分析,如这个类是 否有父类,是否集成了不被继承的类等。
• 字节码验证:是整个验证过程中最复杂的一个阶段,通过验证数据流和控制流的分析,确定程序语义是否正确,主要针对方法体的验证。如:方法中的类型转换是否正确,跳转指令是否正确等。
• 符号引用验证:这个动作在后面的解析过程中发生,主要是为了确保解析动作能正确执行。
3. 准备
准备阶段是为类的静态变量分配内存并将其初始化为默认值,这些内存都将在方法区中进行分配。准备阶段不分配类中的实例变量的内存,实例变量将会在对象实例化时随着对象
一起分配在 Java 堆中。 public static int value=123;//在准备阶段 value 初始值为 0 。在初
始化阶段才会变为 123 。
4. 解析
该阶段主要完成符号引用到直接引用的转换动作。解析动作并不一 定在初始化动作完成之前,也有可能在初始化之后。
5. 初始化
初始化时类加载的最后一步,前面的类加载过程,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java 程序代码。
- 使用
7. 卸载
二:描述一下 JVM 加载 Class 文件的原理机制?
Java 语言是一种具有动态性的解释型语言,类(Class)只有被加载到 JVM 后才能运行。当运行指定程序时,JVM 会将编译生成 的 .class 文件按照需求和一定的规则加载到内存中,并组织成为 一个完整的 Java 应用程序。这个加载过程是由类加载器完成,具体来说,就是由 ClassLoader 和它的子类来实现的。类加载器本 身也是一个类,其实质是把类文件从硬盘读取到内存中。
类的加载方式分为隐式加载和显示加载。隐式加载指的是程序在使 用 new 等方式创建对象时,会隐式地调用类的加载器把对应的类 加载到 JVM 中。显示加载指的是通过直接调用 class.forName() 方法来把所需的类加载到 JVM 中。
任何一个工程项目都是由许多类组成的,当程序启动时,只把需要的类加载到 JVM 中,其他类只有被使用到的时候才会被加载,采用这种方法一方面可以加快加载速度,另一方面可以节约程序运行时对内存的开销。此外,在 Java 语言中,每个类或接口都对应一
个 .class 文件,这些文件可以被看成是一个个可以被动态加载的单元,因此当只有部分类被修改时,只需要重新编译变化的类即可, 而不需要重新编译所有文件,因此加快了编译速度。
在 Java 语言中,类的加载是动态的,它并不会一次性将所有类全部加载后再运行,而是保证程序运行的基础类(例如基类)完全加载到 JVM 中,至于其他类,则在需要的时候才加载。
类加载的主要步骤:
• 装载。根据查找路径找到相应的 class 文件,然后导入。
• 链接
链接又可分为 3 个小步:
• 检查,检查待加载的 class 文件的正确性。
• 准备,给类中的静态变量分配存储空间。
• 解析,将符号引用转换为直接引用(这一步可选)
• 初始化。对静态变量和静态代码块执行初始化工作。
三: Java 内存分配
• 寄存器:我们无法控制。
• 静态域:static 定义的静态成员。
• 常量池:编译时被确定并保存在 .class 文件中的(final)常量值和一些文本修饰的符号引用(类和接口的全限定名,字段的名称和描述符,方法和名称和描述符)。
• 非 RAM 存储:硬盘等永久存储空间。
• 堆内存:new 创建的对象和数组,由 Java 虚拟机自动垃圾回收器管理,存取速度慢。
• 栈内存:基本类型的变量和对象的引用变量(堆内存空间的访问地址),速度快,可以共享,但是大小与生存期必须确定,缺乏灵活性。
1. Java 堆的结构是什么样子的?什么是堆中的永久代(Perm Gen space)?
JVM 的堆是运行时数据区,所有类的实例和数组都是在堆上分配内存。它在 JVM 启动的时候被创建。对象所占的堆内存是由自动内存管理系统也就是垃圾收集器回收。堆内存是由存活和死亡的对象组成的。存活的对象是应用可以访问的,不会被垃圾回收。死亡的对象是应用不可访问尚且还没有被垃圾收集器回收掉的对象。
一直到垃圾收集器把这些 对象回收掉之前,他们会一直占据堆内存空间。
四:GC 是什么? 为什么要有 GC?
GC 是垃圾收集的意思(GabageCollection),内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java 提供的 GC 功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java 语言没有提供释放已分配内存的显示操作方法。
五: 简述 Java 垃圾回收机制。
在 Java 中,程序员是不需要显示的去释放一个对象的内存的,而是由虚拟机自行执行。在 JVM 中,有一个垃圾回收线程,它是低优先级的,在正常情况下是不会执行的,只有在虚拟机空闲或者当前堆内存不足时,才会触发执行,扫面那些没有被任何引用的对象, 并将它们添加到要回收的集合中,进行回收。
六: 如何判断一个对象是否存活?(或者 GC 对象的判定方法)
判断一个对象是否存活有两种方法:
- 引用计数法 所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一 个地方引用这个对象时,就将计数器加一,引用失效时,计数器就减一。当一个对象的引用计数器为零时,说明此对象没有被引用, 也就是“死对象”,将会被垃圾回收. 引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象 A 引用对象 B,对象 B 又引用者对象 A,那么此时 A、B 对象的引用计数器都不为零,也就造成无法完成垃圾回收,所以主流
的虚拟机都没有采用这种算法。
2. 可达性算法(引用链法)该算法的思想是:从一个被称为 GC Roots 的对象开始向下搜索,
如果一个对象到 GC Roots 没有任何引用链相连时,则说明此对 象不可用。
在 Java 中可以作为 GC Roots 的对象有以下几种:
• 虚拟机栈中引用的对象
• 方法区类静态属性引用的对象
• 方法区常量池引用的对象
• 本地方法栈 JNI 引用的对象
虽然这些算法可以判定一个对象是否能被回收,但是当满足上述条件时,一个对象比不
一定会被回收。当一个对象不可达 GC Root 时,这个对象并不会立马被回收,而是出于
一个死缓的阶段,若要 被真正的回收需要经历两次标记. 如果对象在可达性分析中没有与 GC Root 的引用链,那么此时就 会被第一次标记并且进行一次筛选,筛选的条件是是否有必要执行 finalize() 方法。当对象没有覆盖 finalize() 方法或者已被虚拟机 调用过,那么就认为是没必要的。 如果该对象有必要执行 finalize() 方法,那么这个对象将会放在一个称为 F-Queue 的对 队列中,虚拟机会触发一个 Finalize() 线程去执行,此线程是低优先级的,并且虚拟机不会承诺一直等待它运行完,这是因为如果 finalize() 执行缓慢或者发生了死锁,那么就会造成 F-Queue 队列一直等待,造成了内存回收系统的崩溃。GC 对处于 F-Queue 中的对象进行第二次被标记,这时,该对象将被移除” 即将回收” 集合,等待回收。
七:垃圾回收的优点和原理。并考虑 2 种回收机制。
Java 语言中一个显著的特点就是引入了垃圾回收机制,使 C++ 程序员最头疼的内存管理的问题迎刃而解,它使得 Java 程序员在 编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制, Java 中的对象不再有“作用域”的概念,只有对象的引用才有" 作用域"
。垃圾回收可以有效的防止内存泄露,有效的使用可以使 用的内存。垃圾回收器通常是作为一个单独的低级别的线程运行, 不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的 对象进行清楚和回收,程序员不能实时的调用垃圾回收器对某个对 象或所有对象进行垃圾回收。 回收机制有分代复制垃圾回收和标记垃圾回收,增量垃圾回收。
八:垃圾回收器的基本原理是什么?垃圾回收器可以马上回收内存吗?
有什么办法主动通知虚拟机进行垃圾回收?
对于 GC 来说,当程序员创建对象时,GC 就开始监控这个对象 的地址、大小以及使用情况。通常,GC 采用有向图的方式记录和 管理堆(heap)中的所有对象。通过这种方式确定哪些对象是” 可达的”,哪些对象是”不可达的”。
当 GC 确定一些对象为“不 可达”时,GC 就有责任回收这些内存空间。可以。程序员可以手动执行 System.gc(),通知 GC 运行,但是 Java 语言规范并不 保证 GC 一定会执行。
九: Java 中会存在内存泄漏吗,请简单描述。
所谓内存泄露就是指一个不再被程序使用的对象或变量一直被占据在内存中。Java 中有垃圾回收机制,它可以保证一对象不再被 引用的时候,即对象变成了孤儿的时候,对象将自动被垃圾回收器 从内存中清除掉。由于 Java 使用有向图的方式进行垃圾回收管理, 可以消除引用循环的问题,例如有两个对象,相互引用,只要它们和根进程不可达的,那么 GC 也是可以回收它们的,例如下面的代码可以看到这种情况的内存回收:
import java.io.IOException;
public class GarbageTest {
/
**
*
@param args
*
@throws IOException
*
/
public static void main(String[] args) throws IOException
{
// TODO Auto
-
generated method stub
try {
gcTest();
} catch (IOException e) {
// TODO Auto
-
generated catch block e.
printStackTrace();
}
System.out.
println(
"
has exited gcTest!
"
);
System.in.read();
System.in.read();
System.out.
println(
"
out begin gc!
"
);
for(int i
=
0;i
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?