点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
斯坦福最经典的计算机视觉课程CS231n——全称是面向视觉识别的卷积神经网络。涉及目标检测、深度学习优化算法、图像和视频理解、3D视觉、语义分割、生成对抗网络等内容。
今天更新啦。
作为计算机视觉和深度学习领域的经典课程,CS231n由李飞飞团队打造,从课程设计到内容选择,都以入门为导向。
然而,自从2017年后,这门课程的录制版就没再更新过,在李飞飞的社交媒体下面,不时能听见网友吐槽的声音:
我们很喜欢您的课程,但这个领域发展得非常快,为什么2017年后的视频课就不再上传了?
现在,这门课程的录制视频终于更新了,想要入门计算机视觉的小伙伴,可以收藏学习~
如何获取?
在公众号「3D视觉工坊」后台,回复「CS231n」,即可获得视频网盘链接工坊已经为您下载好了。
那么,CS231n课程都讲了些什么?
22节课,入门计算机视觉CS231n是斯坦福开设的一门视觉识别课程,在了解计算机视觉的基础上,理解深度学习在这个行业的应用。
作为一门研究机器人如何「看」的领域,计算机视觉的应用范围非常广泛,像自动驾驶汽车识别行人、图像搜索引擎自动分类等等。
而深度学习的出现,极大地提高了计算机视觉的应用效果。
这门课从理论到实践一键通,学习后,不仅能实现、训练和调试神经网络,还能掌握计算机视觉的前沿研究。
课程的重点在于解决图像识别的问题,为了达成这个目标,将会讲授反向传播算法、训练和微调神经网络的实用技巧。
这次更新的录制课,在内容和形式上都紧跟AI领域新潮流。
从模式到内容紧跟潮流从2017年的录制课视频来看,一共只有16讲的内容。
这次「升级版」的22讲内容,不仅细化了目前比较热门的生成模型(如GAN)的介绍课程,将它从一课时变成了两课时,而且还更新了Transformers、3D、视频处理等近年兴起的行业热门。
例如,在17课的3D视觉课程中,就介绍了将神经网络应用于3D结构的方法。
在这门课程里,不仅有关于3D数据的不同表示形式的讨论,还有对深度图、隐函数、点云等理论知识的介绍。
除此之外,对于3D形状这个新领域,神经网络好坏的度量标准也有所体现。
至于第18课的视频处理,课时则主要介绍了CNN在视频分类中的应用方法,以及视频识别中的通用技术等。
不仅如此,这次的录制视频也更贴合在线课程的形式。
2017年的录制版CS231n课程,只有PPT界面显示、或是偶尔出现教授讲课的界面:
虽然也有PPT和音频同步,但如果想找某个想看的部分,就只能在滚动条上反复拖拉。
更新后的视频课,具体画风是这样的:
不仅更有现场代入感了,而且在导师讲课时,也能通过他的手势跟上知识点所在的位置。
每一节课、每一页的PPT都会呈现在视频下方,具体对某个知识点感兴趣、或是想要听哪一节的PPT,都可以直接点击视频观看。
是不是已经有些跃跃欲试、准备好投身知识的海洋了?
来看看下面的课程表吧。
课程一览CS231n更新后的课程表如下,对里面的部分知识点感兴趣的话,可以戳下方传送门进行学习~
课时1:课程介绍 课时2:图像分类 课时3:线性分类器 课时4:优化算法 课时5:神经网络 课时6:反向传播 课时7:卷积结构 课时8:卷积神经网络(CNN)架构 课时9:硬件/软件知识 课时10:训练神经网络(1) 课时11:训练神经网络(2) 课时12:循环神经网络 课时13:注意力机制 嘉宾讲座:对抗性机器学习 课时14:可视化和理解 课时15:目标检测 课时16:图像分割 课时17:3D视觉 课时18:视频处理 课时19:生成模型(1) 课时20:生成模型(2) 课时21:强化学习 课时22:回顾/总结
传送门:
网课链接: http://leccap.engin.umich.edu/leccap/site/jhygcph151x25gjj1f0
PPT下载: https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r
如何获得视频?
在公众号「3D视觉工坊」后台,回复「CS231n」,即可获得视频网盘链接工坊已经为您下载好了。
本文仅做学术分享,如有侵权,请联系删文。
下载1
在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。
下载2
在「3D视觉工坊」公众号后台回复:3D视觉优质源码,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。
下载3
在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
整理不易,请给工坊点赞和在看!